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NONSTEADY LIQUID AND GAS FLOW WITH HEAT 

ADDITION AND SHOCK PERTURBATIONS 

by Fred S. Sidransky and Margaret Mar ie  Smith 

Lewis Research Center 

SUMMARY 

The theory of one-dimensional nonhomentropic nonsteady fluid flow is developed inde- 
pendently of a specific form of the equation of state. 
used to develop general compatibility relations which are applicable to either liquids or 
gases. By assuming specific equations of state, the classical water-hammer equations 
of Joukowski and Allievi and the nonsteady gas flow relationships of Riemann are deduced 
from the general compatibility relations. 

General numerical methods, based on the method of characteristics, are discussed 
for the two characteristic network for nonsteady liquid flow and the three characteristic 
network for nonsteady gas flow. Computer programs, utilizing these numerical proce- 
dures, are also given. 

To illustrate the versatility and to corroborate in part these methods of solving non- 
steady flow problems, three examples were selected: (1) nonsteady liquid flow, (2) non- 
steady gas flow with heat addition (or removal), (3) shock perturbations in a supersonic 
diffuser. The first example is verified by an alternate technique. The secolid example 
is verified in part by the Rayleigh analysis for steady flow in constant area ducts with 
heating or cooling. 

The method of characteristics is 

INTRODUCTION 

The analysis and study of nonsteady liquid flow and nonsteady gas flow have tended 
to diverge into two branches of fluid mechanics (refs. 1 and 2). This division has arisen 
quite naturally because of engineering requirements solely in hydraulics such as in the 
analysis of water-hammer in penstocks, and solely in gas dynamics such as in the anal- 
ysis of shock tubes and pulse jets. In the analysis of advanced systems, for example, 
rocket engines and Rankine cycle space power systems, the dynamics of the system is 
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governed in large measure by the interdependent nonsteady flow characteristics of fluids 
in different phases. A representation of transients in such systems is therefore depend- 
ent on an understanding of the dynamics of fluids in both the liquid and gas phases. 

In this report, it will be shown, using the method of characteristics, that the classi- 
cal water-hammer equations of Joukowski and Allievi and the nonsteady gas flow relation- 
ships of Riemann can be deduced from a general theory for one-dimensional nonhomen- 
tropic nonsteady fluid flow. (In homentropic flow, the entropy of each fluid particle is 
equal to the entropy of any other particle in the flow region; whereas in isentropic flow, 
the entropy of each particle is constant but may be different from any other particle. 
Hence a flow may be isentropic but nonhomentropic since different particles may have 
different entropies. ) 

flow, numerical procedures, derived from the general theory and adaptable to high-speed 
computers, are discussed. More particular attention is given to nonhomentropic non- 
steady gas flow than to liquid flow, owing to its greater complexity. (A parallel to this 
characteristic problem may be found in supersonic rotational flow. ) 

To illustrate and corroborate these numerical methods, computer programs, which 
are given in appendixes C and D, were developed at the Lewis Research Center, and the 
three examples selected a re  as follows: (1) nonsteady liquid flow (or water-hammer), 
(2) nonsteady gas flow with heat addition (or removal), (3) shock perturbations in a super- 
sonic diffuser. As a check on the accuracy of the numerical methods, the first example 
is verified by an alternate technique (ref. 3), and the second is checked in part by the 
Ftayleigh analysis for steady flow in constant area ducts with heating and cooling. 

To facilitate the use of the theory for the analysis of nonsteady nonhomentropic fluid 

THEORY 

General Compatibility Relations 

The fundamental relation for continuity is given by 

v - + p - + - = o  ap av ap 
ay aY at 

(Symbols a re  defined in appendix A. ) Conservation of momentum (omitting body and dis- 
sipative forces) yields 

2 



If reversible heat addition along the path of a fluid particle of fixed identity is assumed, 
the following is obtained: 

where 

(For a detailed discussion of Lese basic equations, see refs. 4, 5, and 6.) The density 
p, which is some unspecified function of the entropy s and the pressure P, is expressed 
as 

By equation (4), it follows that 

and 

and inasmuch as 

ap - ap ap ap as  
a t  ap a t  a s  at  

+ -- ----- 

equation (1) becomes 

-- v ap +v--+paV+--  ap as 1 ap + - - = o  ap as 
2 ay as  ay ay a~ at as at a 

Following reference 4, let 

3 
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Equations (9) and (10) are used t transform equations (2), (8), and (3) to the following: 

From these equations, the compatibility relations and their corresponding characteristic 
directions are determined using the theory of characteristics as discussed in reference 4 
and in appendix A of reference 6 (vol. I). The compatibility relations will yield the prop- 
erties of the flow on a characteristic. The intersection of the characteristics indicates 
the position of a net point on the time-distance plane. The general compatibility relations, 
as derived in appendix B of this report, a r e  given by 

for the characteristic having a positive slope, 

- - - -= -  1 6-P 6-v P )  
pa 6 t  6 t  as 

for the characteristic having a negative slope in subsonic flow, and 

- = +  Ds 
Dt 
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6+ 6 -  for the particle path. The directional derivatives - and - appearing in the general 
6 t  6t  

compatibility equations (eqs. (14) and (15)) are defined by 

a - a + ( v + a ) -  6+ 
6 t  at aY 
--- 

a 
6t  a t  aY 
--- 6 - -  a + ( v - a ) -  

The characteristic slopes corresponding to the general compatibility equations (eqs. (14), 
(15), and (16)) are defined, respectively, by 

- = v + a  dY 
dt 

- = v - a  dY 
dt 

- -  dY - v 
dt 

Because the compatibility equations as expressed in equations (14), (15), and (16) are not 
functions of any particular equation of state, they may be used for the one-dimensional 
nonsteady nonhomentropic flow analysis of either a liquid or a gas. Indeed, it can be 
shown that both the classical water-hammer equations of Joukowski and Allievi (ref. 2) 
and the nonsteady gas flow relations of Riemann (ref. 5) can be deduced from these com- 
patibility relations. 

Liquid Dynamics 

If it is assumed that in a liquid the percent change of density with entropy change is 
negligibly small, then it may be assumed that 

P) - 0 
as 
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Thus the compatibility equations become 

-- 1 6+P+6+v - = o  
pa 6t  6t 

and 

Since there are only two equations with two unknowns (viz. , the pressure P and the ve- 
locity v), the third compatibility relation (eq. (16)) may be omitted. 

The compatibility relations (eqs. (23) and (24)) may be presented in a more familiar 
form by defining the head H as the pressure divided by the specific weight of the fluid on 
the Earth's surface (here, the assumption is that the datum or reference pressure is 
zero); then 

P - = gcH 
P 

where gc = 32.2 feet per second squared. If the volume flow is obtained from 

q = F v  

then the compatibility relations become 

which are the Joukowski water-hammer relations in terms of head and volume flow. 

tions (27) and (28). If the velocity v is assumed to be negligible as compared to the 
acoustic velocity, equations (27) and (28) become, respectively, 

The fundamental o r  canonical water-hammer relations may be derived from equa- 

6 
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after expanding according to the definitions of the directional derivatives. Equations (29) 
and (30) a r e  obviously true if  

a H -  1 aq 
gC-- --- ay F a t  

which a r e  known as the canonical water-hammer equations (ref. 2). If the acoustic veloc- 
tiy is a constant, these canonical equations may be shown to be but another form of the 
classical wave equation 

ay2 a2 at2 
(33) 

Thus for hydraulic systems in which the flow velocity is small as compared to the acoustic 
velocity and in which the acoustic velocity does not vary along a characteristic, the fore- 
going system of equations is applicable. This, it should be noted, does not exclude the 
possibility that different characteristics in the flow region may have different acoustic 
velocities as may exist in a duct with discrete cross-sectional area discontinuities. In a 
hydraulic system with a gradually varying area conduit and in which body and dissipative 
forces are significant, the compatibility relations may be rederived from the fundamental 
equations (viz., eqs. (l), (2), and (3)) and put in a more general form. The canonical 
equations (eqs. (31) and (32)) are not applicable in this case 

Gas Dynamics 

The assumption of equation (22) is, of course, untenable in a perfect gas. To evalu- 
ate 2 1 for a gas, first consider that 

a s  
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from thermodynamics 

R ds = C d(ln T) - - d(ln P) 
gC 

P 

and the perfect gas law. Inasmuch as 

and if y is assumed constant, equation (34) may be 

ds =- 2y d(ln a) - gcJ 
R Y - 1  

since 

a=* 

Now from equation (37) and the equation of state 

p = - a  P 2  
Y 

Hence, instead of equation (36) 

transformed to 

d(ln P) 

g,J ds =- 2y d(ln a) - 2 d(ln a) - d(ln p) 
R Y - 1  

is obtained. Equation (39) may be simplified to 

By equations (35) and (37), and since for a perfect gas 

h = C  T 
P 

(3 4) 

(37) 

(3 9) 
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equation (40) may be rewritten as 

dh--  gcJ ds  gcJ 1 d(lnp) =-- 
YR T R 

or 

By Maxwell’s thermodynamic relationship 

(E) = T  

P 

it can be seen that 

Thus for a perfect gas, the compatibility relations (eqs. (14) and (15)) become 

a 
pa 6 t  6t R 

for a characteristic with a positive slope (cf. eq. (19)) and 

for a characteristic with a negative slope in subsonic flow (cf. eq. (20)) and 

for the particle path. 

(44) 

(16) 

9 



In the special case of homentropic flow where the entropy is not a function of the con- 
2 a + v  and-a -v  are duit location y or  the time t, the Riemann variables - 

constants; this may be shown from the aforementioned compatibility relations by consid- 
ering the following form of equation (46): 

2 

r - 1  Y - 1  

1 P 6+P + s+v - (y ; 1) q 
--- ---- 
pa  P 6 t  6 t  R 

With the help of equations (36) and (38), equation (48) becomes 

Ds 
Dt 

Further manipulation and remembering that I) = - yields 

For homentropic flow, the right side of equation (50) is zero. Hence, 

-- 6+( z 1 a + v ) = 0  
6 t  y - 

and 

a + v = const 2 
Y - 1  

along the characteristic direction given by equation (19). A corresponding derivation may 
be made from equation (47) yielding 

a - v = const 2 
Y - 1  

along the characteristic direction given by equation (20). Thus, for homentropic flow, 
the compatibility relations as presented in equations (46) and (47) give the classical 
Riemann variables. 

10 



As in reference 5, the compatibility relations for nonhomentropic gas flow may be 
made nondimensional by specifying a reference acoustic velocity ao, which may be se- 
lected from steady-state conditions and a specified reference length yo. From these, a 
reference time to may be deduced from 

- YO to -- 
aO 

Furthermore, two nondimensional parameters may be defined as 

t 7 =- 

to 

2 Multiplying the compatibility relation (eq. (50)) by yo/ao results in 

where the nondimensional entropy S is 

the nondimensional acoustic velocity is 

and the nondimensional velocity is 

(53) 



It may also be shown that the other compatibility relations in nondimensional form become 

and for the particle path 

NUMERICAL PROCEDURES 

Each net point on the distance-time plane is determined in general by the compatibil- 
ity relations and their corresponding directions. The properties of the flow such as pres- 
Sure and entropy can be found from the compatibility relations. The characteristic direc- 
tions serve to locate the position of the net point on the distance-time plane. 

Two options are before the computer in the construction of a characteristic network - 
either a free or a fixed characteristic network may be developed. In a free characteristic 
network, the location of a new or unknown characteristic net point, as net point 3' in fig- 
ure 1, is determined from known end points A and C on the respective left running and 
right running characteristics. Because it is less laborious, the free characteristic net- 
work has been commonly utilized in hand computation (ref. 5, pp. 43 to 45). In a fixed 
characteristic network, the position of the net point on the distance-time plane is pre- 
scribed as net point 3 in figure 1. Consequently, the characteristics passing through this 

point must be determined, which means that the 
end points of the characteristics such as 1 and 2 
in figure 1 must be found by interpolation. Fur- 

the time or distance coordinates of the end points 
must be given, the other coordinate being deter- 

3'  particle path 

Left r u n n i n g  

d i r e c t i o ; A  Ca wave)-,. 

/{' ,y( ,,-Right r u n n i n g  
\ Cb wave) n 0 or thermore, in a fixed network procedure either 

In this report a fixed network was  utilized 

\'. / 

/<, 
\ Y  f 

/ \ 
\ mined analytically. 

E .- + 
A 14' 4 B 2 c  

--- Free characteristic net 
- Fixed chardcteristic net 

because it satisfied typical engineering require- 
ments for information as to dynamic flow condi- 

I 
Distance + 

tions at prescribed locations and uniform time 
increments. The interpolation that is necessary 

Figure 1. - Basic net po in t  for finding end points 1 and 2 as well as 4 pre- 
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sents no special difficulty with the availability of a high-speed computer. In the examples 
of this report, the time coordinate of the end points was preselected for nonsteady gas 
flow while, for the sake of convenience, the end points were prescribed at fixed distance 
coordinates for nonsteady liquid flow. 

Numerical Methods for Liquids 

Basic - net point. - Integrating equation (27) along the left running characteristic re- 
sults in 

a 
‘a H + - q =  

gCF 

where Ca is the constant of integration or water-hammer variable for the left running 
wave, which is analogous to the nonsteady gas flow equation (eq. (51)). By equation (61) 
the following may be written along the left running characteristic: 

93 = ca al al 

gcF1 c 1  q1 = H3 +gF 
H i  +- 

Integrating equation -(28) along the right running direction gives 

where Cb is a constant of integration or water-hammer variable for the right running 
wave, which is similar to equation (52). Furthermore, equation (63) yields 

The corresponding characteristic direction for the left running wave is - dY = a, and for 
dt 

the right running wave, 2 = -a, since the velocity v is assumed to be negligibly small 

compared to the acoustic velocity a. Obviously the volume flow q3 at net point 3 is 
determined by the simultaneous solution of equations (62) and (64), which is 

dt 

13 



'a- 'b 

"1 a2 -4- 

gcF1 gcF2 

The volume flow at net point 3 can then be substituted into either equation (62) or  (64) to 
compute the head at that net point. 

Inasmuch as in liquid dynamics the location of end points 1 and 2 is preselected (as 
mentioned previously), the corresponding time coordinates of the net points must be 

y3 - y1 t l = t  3 - 
al 

y2 - y3 t2 = t3 - 
"2 

the distance coordinates y2 and y1 being fixed. Since the acoustic velocities al and 
a2 a re  constants, the times tl and t2 need be computed but once. 

Summing up, the computation of H3 and q3 may proceed as follows. From known 
values of tl and t2 and the values of head and volume flow at those times, the water- 
hammer variables Ca and Cb may be computed as in equations (62) and (64). The vol- 
ume flow is then defined from equation (65), and the head H3 may be computed from 
equation (62) or (64). This process is continued proceeding from one net point to another, 
net point 3 being always the net point whose position is known on the distance-time plane 
but whose head and flow a re  unknown. 

Since the characteristic curves may be regarded as patching curves (cf. ref. 6, 
p. 601), the patching of flow regions which a re  analytically different is permitted. This 
allows for the introduction of a valve, for example, at any given distance coordinate, 
which may be characterized by 

where Kv is the valve orifice coefficient and HQ1 and HQr a re  the heads immediately 
ahead and behind the valve. In this instance, equations (62) and (64) become 

14 
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a. a, 

9 3  = ‘b a2 
92 = HQr - - 

gcF2 gcF2 

2 a 
H2 - - 

Equations (68), (69), and (70) may be solved simultaneously, and using the Quadratic 
Formula (ref. 7) results in 

where 

al Ya = - 
gcF1 

and 

“2 yb = -- 
gcF2 

(7 3) 

This should be compared to reference 3, page 10 in which the field method is used instead 
of the lattice point method of this report. These two methods of solving the partial differ- 
ential equations of nonsteady (and supersonic) flow are discussed in reference 6, 
pages 491 and 492. 

ity relation (eq. (64)) need be used. If the end point of the right running wave is repre- 
sented by net point 2, appropriate values of head and flow, Ha and q2 at time t2, 
define the water-hammer variable Cb. If net point 3 is chosen as the left boundary point, 
there are two unknowns (viz., the head and flow at the boundary H3 and q3). Hence, 
either the head or  the flow at the boundary must be given; for example, the head at the 
outlet of a reservoir is typically assumed to be constant. Of course, the boundary may 
be a valve in which case the functions describing valve performance together with the com- 
patibility relation can be solved either analytically, i f  possible, or  numerically. 

Left - __ and right - -  boundaries. - For the left boundary, only the right running compatibil- 

15 



For the right boundary, only compatibility relation (eq. (62)) is required, and the . 

past reference time is clearly tl. For some assumed boundary condition, the procedures 
are quite similar to the left boundary discussed previously. 

Numerical Methods for Gases 

Basic net point. - In nonsteady nonhomentropic flow, the procedure for the basic net 
point (cf. fig. 1, p. 12) is considerably more difficult because of essentially two compli- 
cations: (1) the particle path or third characteristic cannot be neglected and (2) the char- 
acteristic slopes a re  not constants. In the first instance, the particle path cannot be ne- 
glected since the compatibility equations for a perfect gas (viz. , eqs. (55) and (59)) depend 

DS on the value of the co-moving or substantial derivative -, a fundamental parameter for 
DT 

the third characteristic. Thus to find the flow conditions at net point 3 in figure 1, three 
compatibility equations instead of two must be solved. (Net point 3 always identifies the 
"later?' net point whose position is known on the distance-time plane but whose flow prop- 
erties are unknown.) Secondly, owing to the compressibility of a perfect gas, the acoustic 
velocity cannot be assumed to be a constant. In proceeding from net point 1 to net point 3, 
for example, the acoustic as well as the flow velocities at each net point may be different, 
requiring an approximation of the characteristic slope (cf. eq. (19)). Although the posi- 
tion of net point 3 on the distance-time plane is preselected, it does not follow that the 
location of net point 1 on the base line is immediately evident as is the case in liquid dy- 
namics. Rather, due to the variability of the acoustic and flow velocities, the location of 
net point 1 becomes part of the problem. 

The difficulties encountered and the solution to the basic net point procedure in a 
fixed network may be more readily understood by considering the following example, In 
figure 1, at points A, B, and C on the initial line all parameters a re  assumed to be known. 
Assume that the end points 1 and 4 are  between A and B, and that end point 2 is between 
B and C. Also assume that reasonable guesses for the nondimensional acoustic velocity 
at net point 3 d3 and the nondimensional velocity 4V3 a re  dB and 4VB, respectively, 
which a re  the flow velocity and the acoustic velocity at B. By linearly interpolating for 
dl and 4tl between A and B, the correct location of net point 1 on the base line ABC 
will be that point whose characteristic slope will pass through the preselected net point 3 
and net point 1. The characteristic slope in this instance is given by 

16 



which is an inverted finite difference form of equation (19). It may be shown by the appli- 
cation of the elementary principles of analytical geometry that the location of net point 1 
C l  may be expressed in general by the quadratic 

where 

and 

‘nlQ = ‘3 - TA + ‘a1Q‘A 

cn2Q = *3 + J83 + *A + J8A - CalQ<A 

Likewise, for the location of netpoint 2 C 2  

2 q 2  + Pr<2 + 5or = 0 

and for the slope (cf. eq. (20)) 

17 



where 

and 

For the location of c 4  the end point of the particle path on the initial line, a similar 
quadratic is the result 

2 
QmP4 + Pm<4 + Ym = 0 

and for the slope (cf. eq. (21)) 

73 - ‘4 - 2 

< 3 - P 4  *3+*4 
- 

18 



where 

and 

These quadratics (viz., eqs. (75), (78a), and (81a)) of course, may be solved for cl, c2, 
and c4, respectively, by the well-known Quadratic Formula where the correct sign is 
given by the solution for 5 which is to the left of and nearest to 5 3, and for c 2  which 
is to the right of and nearest to q3,  and for q 4  which is to the left of and nearest to c 3  
if (e3 + e4)/2 > 0. Further it will be seen that, if  the slope of the base line is zero, then 

a l = a r = a  = o  m 

and the solutions to equations (75), (78a), and (8la) may be represented by 

VQ 
5 1  = -- 

pQ 

19 
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qr 
q2 = -- 

or 

q m  
54 = -- 

om 

respectively. 
If the estimated location and associated flow parameters of the end points of the char- 

acteristics a re  determined from the assumed values of Jd3 and e3, a better approxima- 
tion of the values of Sd3 and 4k3 can be made by the Method of Iteration for Simultaneous 
Equations (ref. 8).  A new value of e3 may be determined from the assumed values of 
d3 and @3. If the compatibility relation (eq. (60)) is expressed in finite difference form, 
the result is as in reference 5 

s3 = s4 (T3 - 74) 
DT 

(84) 

The time increment 73 - 74 is obviously known since the basic network is for fixed time 
and distance coordinates. The nondimensional entropy S4 is found by linearly interpolat- 

DS ing along the base line ABC at location c4. If the rate of entropy increase - is 
DT 

assumed to be known, then S3 is defined. With the interpolated values of the flow param- 
eters at locations 5 
finite-difference form of equations (55) and (59), namely, 

and c2, the Riemann variables at location c 3  may be found by the 

and 

where the double subscript represents an average value (e. g., 5813 = (dl + Js3)/2). If 

d3 + @3 913 =- 2 

Y - 1  

20 



and 

J/3 - *3 s3 =- 2 
Y - 1  

Then e3 is determined by 

By following the Method of Iteration for Simultaneous Equations, the entire system 
is recalculated with the new value of 4Y3 and the previous value of d3; this includes 
finding new locations for < 1, 5 2, and < 4. With the new interpolated values of the flow 
parameters at these locations, equations (84), (85a), and (85b) are recalculated; .Ba; is 
then computed with the new value of @3 by 

583 -2 - - 1 (g3 + "5) 

This completes a single iteration. The process is repeated until the values of d3 and 
4Y3 converge within some desired tolerance. With a reasonable tolerance for engineer- 
ing calculations, this method has rarely required more than two iterations for the com- 
putation of any basic net point in the examples of this report. 

procedure is not significantly altered except that in equations (85a) and (85b) the ratio of 
specific heats y at corresponding net points must be altered to correspond with the prop- 
erties of the fluid. 

boundary are assumed, the nondimensional acoustic velocity d3 at the boundary may be 
derived from equation (36) to yield 

If, in a problem, net points 1 and 2 have different gas properties, the basic net point 

Left boundary. - If a constant pressure P3 and a constant entropy S3 at the left 

1 

where the nondimensional entropy at the boundary S3 is determined from equation (56). 
The reference pressure Po must be consistent with the reference acoustic velocity 
(cf. eq. (54)) and some assumed reference density po; thus 
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2 

Y 

ad)O Po =- 

as in equation (38). A solution for the nondimensional velocity at the boundary 413 may 
now be found by applying the Method of Iteration (cf. ref. 8). Since the location 5 ,  and 
the time T~ at the left boundary are known, the location of p2 on the base line may be 
found by equation (83b) if qB is assumed to be a good initial guess for 413, the nondi- 
mensional velocity at the boundary. If an initial location for p2 is chosen, a linear 
interpolation along the base line may be made for 412,d2, and S2. Only a single com- 
patibility relation (i. e., eq. (85b)) is necessary to define the Riemann variable g3 inas- 
much as only a positive direction of flow is assumed. Then 9k3 is given by 

remembering that d3 is a constant as in equation (89). If the previous value of 4 is 3 
different from the initial guess, a few iterations a re  ususally sufficient for convergence 
to some desired tolerance level. 

Later, in the discussion of the supersonic diffuser example, special procedures are 
covered i f  the left boundary consists of a supersonic diffuser with a normal shock down- 
stream of the inlet. 

Right boundary. - If the right boundary is choked, the ratio of the duct area F to the 
throat area F* is given by (ref. 6, pp. 85 to 86) 

where M3 is the subsonic Mach number just upstream of the choking orifice at the right 
boundary. Hence, for a specified F/F*, M3 is constant. For positive flow, two com- 
patibility relations (eqs. (84) and (85a)) and their corresponding end point p l  and p4 
together with the boundary condition are necessary to define flow conditions at the bound- 
ary.  If gdB is used as an initial guess for d3, "e; is computed by 

4V3 = d3M3 (92) 

The locations p 1  and p4 are defined by equations (83a) and (83c).  Interpolating along 
the base line for 411, dl, and S1 at  p and for S4 at C,, the Riemann variable P3 
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is known by f i r s t  determining S3 from equation (84) and substituting this value together 
with the aforementioned parameters in equation (85a). The acoustic velocity JJ3 is then 
given by 

93 

+ M3 
583’ 2 

Y - 1  

(93) 

This value is then compared to the initial guess for d3 to assess whether additional iter- 
ations are necessary. 

Obviously the right boundary condition is not limited to a choking orifice nor is the 
left boundary limited to a constant pressure. Had the boundary conditions been reversed 
or other boundary conditions prevailed, similar methods as described previously would 
apply. 

Special net point cases. - Clearly, as in figure 2, there will be instances in the com- 
ptat ion of the basic net point 3 when the end point of the B characteristic, net point 1, 
or the end point of the 9 characteristic, net point 2, exceed their respective boundaries. 
In those instances the boundary values must be used in place of the rfictitious net points 1 
and 2. Consider the case of a net point 3 where r: 1, the end point of the 9 character- 
istic, falls beyond the left boundary. To find the intersection of the 9 characteristic 
with the boundary, the location of the fictitious net point 1 is first computed by equa- 
tion (83a). The intersection of the characteristic passing through net points l and 3 with 

.rLimit .\ 
\. 

\ 

c 2  
Distance - 

Figure 2. - Special net point cases. 
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the boundary is then found by 

73 - 
q3 - q1 

= 73 - (c3 - Tlim) 

where T~~ is the nondimensional time at the boundary and Tlim is the location of the 
boundary itself. The 9 characteristic which intersects the limit point on the left bound- 
ary as in figure 2 is determined by the methods discussed in the section on left boundary 
procedures. The values dlim, 4Ylim, and Slim become in effect the end point flow 
parameters of the left running wave; the line connecting the limit point with net point 2 
is used as the base line on which the end point of the particle path, net point 4, is located. 
Points A and B are the limit point and net p i n t  2, respectively (see fig. 2); quadratic 
equation (eq. (81a)) must be solved since the slope of the base line is no longer zero. 

is obtained 
Similar methods apply to the right boundary where, instead of equation (94a), there 

Another difficulty arises when base point 1 or 2 is within the boundaries but falls to 
the left of point A or to the right of point C, respectively. In this case if net point 1 falls 
beyond A, as in figure 2, then interpolations may be performed between A and B . Simi- 
larly, if  net point 2 is beyond C, then interpolation between B and C may be necessary. 

1 1 
2 2 

Orangization of Network Calculations 

There are a number of ways in which a characteristic network can be organized. 

Distance - 
Figure 3. - Organization of network 
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Basically each net point must be identified by 
some enumerative order; at each identified 
net point, a scheme must be devised for se- 
lecting the correct end points of the character- 
istics for that net point; and lastly, there must 
be a method of proceeding from one net point 
to another. The enumerative order selected 
in the computer program for nonsteady non- 
homentropic gas flow is shown in figure 3. 
The known base points of net point 5 ,2  for ex- 



ample, are net points 4 , l  and 5 , l  and 6 , l  (between which interpolations will probably be 
necessary) which correspond to the base points A, B, and C of figure 1 (p. 12). The first 
subscript, it will be seen, indicates the distance coordinate and the second, the time co- 
ordinate. The procedure of going from one net point to another is nothing more than pro- 
ceeding according to some numerical order along a specific time coordinate (fig. 3). 

Evidently both problems in water-hammer or gas dynamics may be solved on the 
same network using the same procedures and in fact using the same computer program if 
the general compatibility relations (eqs. (14), (15), and (16)) are employed in a region free 
of compression shocks. But inasmuch as the slopes of the characteristics are constants 
in liquid dynamics, a simpler water-hammer program may be devised (cf. appendix D 
or ref. 3). 

EXAM P LE S 

Three examples have been chosen (corresponding to the three parts of fig. 4). The 
first two have been selected to corroborate the numerical methods of this report (viz., 
an example in water-hammer or liquid dynamics which can readily be checked against the 

Orifice with 
sinusoidal 
area variation - 

(a) Hydraulic duct perturbed by periodic variation of i n le t  orifice. 

Constant t ~- 7 ,-Choked 
' orifice ___) pressure 

1:::; I I I-- - t  4- $. 
0 1 2 3 4 5 

Distance, f t  

(b) Constant area duct subjected to defined rate of cooling (E - -0.5). 
- - - -. . -_ .- 

Normal shock-, 

In let----  

Diffuser <-. exit ---I 0 i 
I - - - -  

; 

,-Choking 
', ori f ice wi th 

periodic d 5 variations in area 
3 4 

Distance, ft 

(c) Supersonic diffuser. 

Figure 4. - Configurations for examples. 
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methods of reference 3 and secondly, an example in gas dynamics, the cooling of a per- 
fect gas flowing in a duct of constant cross-sectional area). A partial verification of the 
latter example is possible inasmuch as at steady-state conditions the results of the non- 
steady flow analysis should be consistent with the Ftayleigh analysis for cooling or heating 
of a constant area duct (ref. 6, ch. 7). The third example, shock perturbations in a 
supersonic diffuser, has been selected to show how the analytical methods of this report 
may be applied in an approximate manner to the dynamics of a supersonic inlet, the de- 
sign of which is of current interest. 

Example 1: Hydraulic Duct Perturbed by a Periodic Variation of Inlet Orifice 

In the configuration shown in figure 4(a), three orifices are inserted at equal intervals 
of 17 feet in a constant cross-sectional area duct with an inside diameter of 7/8 inch. 
The values of the orifice coefficients are given by 

gn = gIII = gw = 2.456 ft1I2/sec (9 5) 

The subscripts 11, 111, and IV denote the location of these orifices in the duct (cf. fig. 
4(a)). The orifice coefficient $f is equal to the orifice coefficient divided by the 
duct area (cf. eq. (68)); hence, the velocity v at each orifice can be presented by 

where Hi and Hr are the heads immediately ahead or  upstream and behind or down- 
stream of the orifice. At the left and right boundaries are additional orifices represented 
by gI = 0.6 5 and W v  = 0.414 (foot) 'l2per second, respectively. Initially, the head just 
downstream of the first orifice is 260 feet, the head just upstream of the right boundary 
is 238.6 feet, and the velocity through the duct is 6.5 feet per second. The acoustic 
velocity is set at 3800 feet per second throughout the duct. Perturbations are introduced 
into this simple system by varying the orifice coefficient W I  at the left boundary accord- 
ing to the function 

gI = go + I sin wt 
amp (97) 

where Wo = 0.65, gmp = 0.5, and w = 27rf where f = 70 cps. The time t is real 
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Figure 5. - Nonsteady l iquid flow example. 

time in seconds. 

were used to compute the dynamics of this line. The results were practically identical, 
which may be verified by inspection of figure 5, which represents a short period or time 
slice of the entire transient. 

Under these conditions the water-hammer programs of this report and of reference 3 

Example 2: Cooling Along a Constant Area Duct 

As seen in figure 4@), a duct of constant cross-sectional area, 5 feet in length, 
choked at the right boundary, and having a constant pressure left boundary, contains, 
prior to any transients, a perfect gas flowing at the same Mach numer of 0.384 at each 
location upstream of the choking orifice. Initial values of pressure, specific weight, and 
temperature (assumed to be constant at every upstream location) are P = 22.74 pounds 
per square inch, W = 0.06977 pound per cubic foot, and T = 880.57’ R. A reference 
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1.4; gas constant, 53.3 feet per OR; - = -0.5. 

28 



\ 
\ 
\ \  
\ 
\' 
,\ 
\ 
\ 

(c) Temperature transients. 

\ 
\ 

\ 
\ 

\ 
\ 

I 
I 
I 

I 
I 

\I r 
'Y s 
i 

10 11 12 
Nondimensional time, T 

(d) Mach number transients. 

Figure 6. - Concluded. 

29 



length yo of 10 feet and a reference acoustic velocity a. of 1119 feet per second were 
selected. By equation (54) the reference time to becomes 0.00894 second, and real time 
in seconds is the nondimensional time multiplied by this factor. 

DS defined rate of cooling, namely, a - = -0.5 (cf. eq. (60)) along the duct. Periodic 
DT 

oscillations follow the transient as can be seen in figure 6; after these oscillations have 
been spent, the flow settles about altered steady-state conditions at each location, quite 
different from the initial conditions prevailing before the transient. 

Rayleigh steady-state analysis (cf. ref. 6, ch. 7). After the transient has been com- 
pleted, the temperature at the left boundary is 880.57’ R and the Mach number is 0.443. 
At the right boundary o r  discharge of the duct, the Mach number is 0.384, with a corre- 
sponding temperature of 733.79’ R. With the help of table B. 5 in reference 6, pages 628 
and 629, the critical temperature ratios are (adopting the nomenclature of ref. 6) 

A transient is initiated in this system by instantaneously imposing and sustaining a 

It is interesting to compare, as a check, the f inal  steady-state conditions with the 

and 

by interpolation. Thus the temperature ratio is 

[**/M=O. 443 - - 0.69505 = 193 

which compares within 1 percent of the temperature ratio of the values computed from the 
nonsteady flow analysis. A similar check may be made for pressure ratio, and it may be 
shown that excellent agreement is obtained. In addition, it may be seen that the frequency 
of the oscillations, about 59 cps, approximates the quarter wave resonant frequency for 
the duct. 
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Example 3: Perturbation of a Normal Shock in a Supersonic Diffuser 

In figure 4(c) (p. 25), a supersonic diffuser followed by a constant area duct may be 
seen. In this example the same dimensions and initial conditions prevail in the duct as 
in the previous cooling example. At the right boundary the system is perturbed by vary- 
ing the choking throat area with time (fig. ?(a)). In place of the constant pressure bound- 

1.6. The Mach number at station zero (the inlet of the duct or diffuser exit) Mex is 
0.384, and the Mach number at the diffuser inlet Min is 1. 5. In this example, the 
quasi-steady methods of reference 5, pages 99 to 103 a r e  adopted. Hence the weight 
flow by continuity and the stagnation temperature by conservation of energy are assumed 
to be invariant from the diffuser inlet to the diffuser exit. By these assumptions if 

' ary, there is a supersonic diffuser with a diffuser exit to inlet area ratio F,/Fin of 

the nondimensional entropy increase across the shock S, - Sin 

(994 

is given by 

Min as in reference 5 and reference 6, pages 118 to 121. For the specified Mex, 
and Fex/Fin, S, - Sin = 0.0948. The supersonic Mach number just upstream of the 
shock Mss may be found by solving the following equation for Mss: 

r 1 

The ratio of shock location area to inlet area Fss/Fin is then known by 
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Fss - Din 

Fin Dss 
--- 

where 

The initial ratio of shock location area to inlet area for the previously specified conditions 
is 1.034. The initial subsonic Mach number just downstream of the shock Msub may be 
found by the use of Prandtl's equation 

1 MEUb = - 
M L  

(cf. eq. (5. 17a) of ref. 6) where the dimensionless velocity M* is determined by 

(104a) 

(104b) 

For this example, the value of the subsonic Mach number Msub is 0.654. 

tially the nondimensional stagnation acoustic velocity dT, which it will  be noted is a con- 
stant, may be computed from 

To determine conditions in the diffuser, an iterative procedure is necessary. Ini- 

- 1  2 1/2 
dT=d ex ( 2  1 + Y  Mex ) 

using the initial values of deX and Mex. Next, an estimate of geX is used to determine 
the acoustic velocity at the diffuser exit dex at any later time from (ref. 5, p. 64) 

i 

Y + l  

I -  



which was derived by conservation of energy and the S compatibility relation. The non- 
dimensional velocity is then given by 

(107) 
2 

“‘ex - ’ex eex =- 
Y - 1  

The end point of the 9 characteristic and the corresponding parameters 
S2 can be ascertained by methods discussed in the left boundary procedures. At this 
point the nondimensional entropy increase may be calculated by equation (loo), and the 
entropy at the diffuser exit Sex may be deduced. The Riemann variable at the diffuser 
exit gex may then be calculated by 

e2, d2, and 

where d2, ex = (d2 + dex)/2,  and 

“‘2 - *2 g2 =- 2 

Y - 1  

(108a) 

(108b) 

DS 
DT 

Equation (l08a) is a finite difference form of equation (59) since in this example - = 0. 
The Riemann variable g2 is defined by the interpolated values of d2 and 
at the end point g2 of the D characteristic. The Riemann variable gex computed from 
equation (108a) may be compared to the estimated value, and unless there is agreement 
between the initial guess and final calculation of Sex within a reasonable tolerance, ad- 
ditional guesses will be necessary. After these iterations have been completed, the shock 
Mach number Mss and the shock location represented by Fss/Fi, may be computed 
from equations (101) and (102), respectively. Moreover, the pressure loss APT/PT is 
known from 

4P2 

pT Fex Dex ’T, in 

At the right boundary, the system, i t  will be remembered, is perturbed by varying 
the choking throat area with time. Clearly as the duct to throat area ratio at the right 
boundary decreases (i. e., the throat area is being enlarged) the Mach number at the right 
boundary increases or an expansion wave is initiated at this boundary. When this wave 
finally arrives at the left boundary, the shock moves forward as seen in figure 7(b) in- 
creasing the supersonic Mach number ahead of the shock and the pressure losses (see 
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fig. 7(c)). As the choking orifice at the right boundary returns to its former position, 
compression waves resulting from this motion cause the shock to return nearly to i ts  
former position. Had the compression waves been too strong, the shock would have been 
blown out of the diffuser altogether. Pressure oscillations at specified locations along the 
duct due to this motion are shown in figure 7(d). 

CONCLUDING REMARKS 

A theory, numerical methods, and computer programs for one-dimensional, non- 
steady, nonhomentropic fluid flow have been presented; and it has been demonstrated that 
from the same general compatibility relations, nonsteady liquid flow and nonsteady gas 
flow with heat addition and shock perturbations may be analyzed. Moreover, in two of the 
examples selected, verification of the computations by alternate methods has been shown. 

The theory, presented herein, does not preclude the possibility of analyzing a fluid 
in which the properties (e. g. , molecular weight) of the fluid on each side of a defined 
interface a re  different. Such an instance may arise in a combustion chamber due to the 
initial injection of fuel, or during the expulsion of air from an open-ended duct as, say, 
nitrogen gas issues into the duct from a high pressure bottle at the opposite end. 

In the formulation of the general compatibility relations, body and dissipative forces 
were omitted together with the variation of cross-sectional area in a conduit. The funda- 
mental equations (i. e . ,  conservation of energy, momentum, and continuity) may be ex- 
tended to include these effects, and new compatibility relations may be derived which will 
have a broader application in nonsteady liquid and gas flow problems. Further, since no 
equation of state has been specified, the theory is not limited only to the dynamic analysis 
of liquids and gases. The state of the fluid may be described by a table of values such as 
a steam table. The theory, thus, may be applied to the dynamics of homogeneous two 
phase flow with heat addition. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 8, 1966, 
120- 27 - 04 - 27- 2 2. 
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APPENDIX A 

SYMBOLS 

d 

a 

'a 

'b 

'P 

D 

F 

f 

gC 

H 

h 

J 

Kv 

M 

Mss 

P 

$7 

Q 
9 

36 

nondimensional acoustic velocity 
defined in eq. (57) 

acoustic velocity, ft/sec 

water-hammer variable (see 
eq. (W, ft 

eq. (6311, ft 
water-hammer variable (see 

specific heat at constant pres- 
sure, Btu/(lb)(OR) 

parameter (see eqs. (99a) and 

(99b)) 

cross-sectional area, sq f t  

frequency, cps 

acceleration due to Earth's 
gravitational field, 32. 2 
ft/sec 

head, f t  

enthalpy, Btu/lb 

mechanical equivalent of heat, 
778.26 ft-lb/Btu 

orifice coefficient (see eq. (68)), 
f t  5/2/sec 

Mach number 

shock Mach number 

pressure, lb/sq f t  o r  lb/sq in. 

Riemann variable (left running) 

heat per pound of fluid, Btu/lb 

Riemann variable (right running) 

q 

R 

I 

S 

ya 

% 

S 

T 

t 

4v 

V 

W 

Y 

Y 

5 

17 

5 

P 

7 

J/ 
w 

volume flow, cu ft/sec 

gas constant, ft-lb/(slug) (OR) 

orifice coefficient (see eq. (96)), 
ft 1/2/sec 

nondimensional entropy defined in 
eq. (56) 

water-hammer parameter (see 
eq. (72)), sec/sq ft 

eq. (73)), sec/sq ft 
water-hammer parameter (see 

specific entropy, Btu/(lb)('R) 
0 temperature, R 

time, sec 

nondimensional velocity defined in 
eq. (58) 

velocity, ft/sec 

specific weight, lb/cu f t  

conduit length, f t  

ratio of specific heats 

nondimensional distance defined 
in eq. (54a) 

parameter (see eq. (10)) 

parameter (see eq. (9)) 

density, slug/cu f t  

nondimensional time defined in 
eq. (54b) 

parameter (see eq. (3)) 

frequency, radians/sec 



Subscripts: 

A 

a 

amp 

B 

b 

C 

ex 

in 

lim 

Q 

m 

0 

r 

ss 

base point (see fig. 1) 

refers to left running wave in 
liquid dynamics (see fig. 1) 

amplitude (see eq. (97)) 

base point (see fig. 1) 

refers to right running wave in 
liquid dynamics (see fig. 1) 

base point (see fig. 1) 

diffuser exit 

diffuser inlet 

limit 

left or upstream of fluid par- 
ticle 

refers to fluid particle 

ref e r ence 

right or downstream of fluid 
particle 

supersonic 

sub subsonic 

T stagnation 

0 see eq. (97) 

1 end point -of left running wave 
(see fig. 1) 

2 end point of right running wave 
(see fig. 1) 

3 intersection of left running wave, 
right running wave, and par- 
ticle path (see fig. 1) 

end point of particle path 4 

I, n, see fig. 4(a) 
m, IV, 
V 

Superscripts: 

1 

2 

t 

alternate base point (see fig. 2) 

alternate base point (see fig. 2) 

refers to free characteristic net 
point (see fig. 1) 

* signifies state at which M = 1 
(see ref. 6) 
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APPENDIX 13 

DERIVATION OF GENERAL COMPATIBILITY RELATIONS 

ap 
a5 at 

First, equations ( l l ) ,  (12), and (13) must be solved for - and 2 according to the 

methods of reference 4. The other unknown 2 is omitted since it will yield no addition- 
al compatibility relations (cf. ref. 6, pp. 974-977). The denominator in every case is a5 

0 v- a <  +- a< 
ay a t  

0 

= o  

Hence, 

One solution is 

Hence, 

and the second solution is 
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Hence, 

x v-+- at at 0 
ay a t  

Y P- 

0 V- a t  +ag 
ay a t  

Z 

- -  dY - v - a  
dt 

= o  (B6) 

Now if 

solve for by 
a t  

a6 36 - = -(v + a) - 
at aY 
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which is implicit in equation (B4b), then 

X 

Y 

Z 

or 

= o  

Dividing by a results in one possible solution to equation (B8), that is, 

aP -pX - aY + a -  Z = 0 
as 

along a line on the y, t plane having the slope given by equation (B4c). If the following is 
assumed: 

instead of equation (B10) 

- p x  + aY - a* z = o 
as 

is obtained along a line on the y, t plane having the slope given by equation (B4d). By 
solving equations (ll), (12), and (13) for the compatibility relation along the particle 
path is found from at 
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0 0 Z 

or expanding along the third row 

.e," = 0 

since along the particle path 

v -+ag=o  a< 
ay at 

A possible solution to equation (B14) is 

z = o  

Therefore, equation (B5c) results in 

but 

o r  

= o  

If there is no heat addition to the system, then 
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, .. . ._ .I_ - .I. 

o r  

a6 in equation (15) of reference 4. 

tended to accommodate nonhomentropic flow in which there may be not only shock waves 
but also heat addition. 
ibility relation (eq. (B10)) may be presented in the following form: 

At this point, the left and right running compatibility equations of reference 4 are ex- 

From equations (B5a), (B5b), and ( B ~ c ) ,  the left running compat- 

Now if  

a 
et at a Y  
--- e + -  a + ( v + a ) -  

and 

6-  a a - =- + (v - a) - 
tit at aY 

then equation (B22) may be expressed by 

or  
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t which is the compatibility equation for a fluid (gas or  liquid) including heat addition in the 
left running direction (cf. fig. 1). A similar development may be made for the right run- 
ning direction. Such a development yields 

i 

which is the compatibility equation for a fluid (gas or  liquid) including heat addition in the 
right running direction (cf. fig. 1). 
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APPENDIX C 

COMPUTER PROGRAM FOR NONHOMENTROPIC NONSTEADY GAS FLOW 

In the following, the input or required data will be presented for this program so that 
The input of this computer program contains several options it may be readily employed. 

not utilized in either the example for nonsteady gas flow with cooling o r  the supersonic 
diffuser example. 
for this program. 

This will be made clear in the following outline of the input required 

Inpu t  Variables and Explanations 

First input card (corresponding to read statement 200170) 

NL 

NTIM 

number of points to be computed on each line 

when multiplied by time increment DELT represents the value of time on initial 
line 

NTOT 

KTPT 

number of time intervals to be computed 

i f  1, results will not be punched on cards; if 2, results will be punched on cards 
for possible use in plotting 

Second input card (corresponding to read statement 200180) 

GAM ratio of specific heats 

GG acceleration due to gravity 

RR gas constant 

A J J  mechanical equivalent of heat 

PRSl reference pressure 

RHO1 reference density 

ALO reference length 

Third input card (corresponding to read statement 200190) 

AKDS amplitude for - oscillation (cf. card 700220) DS 
DT 
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AKMK 

A K P S  

AKS 

DS DSDTI initial value of - 
Dr 

amplitude for Mach number oscillation at right boundary (cf. card 700210) 

amplitude for pressure oscillation at left boundary (cf. card 500140) 

amplitude for entropy oscillation at left boundary (cf. card 500170) 

Fourth input card (corresponding to read statement 200200) 

DS 
D7 

FFDS frequency for - oscillation (cf. card 200350) 

FFMK 

FFPR 

FFS 

DELT nondimensional time increment 

DELL 

frequency for Mach number oscillation at right boundary (cf. card 200840) 

frequency for pressure oscillation at left boundary (cf. card 200340) 

frequency for entropy oscillation at left boundary (cf. card 200360) 

distance between any two points on any base line; if properties on initial line 
a r e  not constant, DELL = 0.0 

EM1 

A2 1 

shock Mach number; if  diffuser problem is not being run, EM1 = 0.0 

diffuser exit to throat area ratio 

After the fourth input card, there a re  two options which are selected by setting DELL 
equal to either zero or to its value, the distance between two points on a base line. If 
DELL is zero, parameters at  each location on the initial line a re  different. One card is 
required for each point. 
example, five additional cards a r e  required. 
So, for the first option: 

Hence, i f  the number of points on a base line (NL) is five, for 

Input cards (corresponding to card 200230) 

th Z(L) location of L point on initial line 

R(L, 1) th nondimensional acoustic velocity at L point on initial line 

U(L, 1) nondimensional velocity at L th point on initial line 

S(L, 1) 

TIM( 1) 

nondimensional entropy at L th point on initial line 

nondimensional time on initial line 
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and for the second option: 

Fifth input card (corresponding to card 200260) 

AZ 

AR 

AU 

AS 

TIM( 1) 

location of left boundary point, usually zero 

constant value of nondimensional acoustic velocity along initial line 

constant value of nondimensional velocity along initial line 

constant value of nondimensional entropy along initial line 

nondimensional time on initial line 

Fortran Program Listing 

C MAIN PROGRAM 
COMMON /CONST/ A09 AJJ, AKDS9 AKPSI AKS, AMOK, CON19 CON29 CON39 
1 CXlr DSDT9 DSDTIr GAM, GG, GMMlr GMP1, OMGD, OMGP, OMGS, 
2 PRSlr PRSIL, R R I  RHO19 531, TIM0 

1 U(20r10)r Z(20) 
COMMON /PROP/ NIT(20rlO)r R(20rlO)r S(20r10)r TIM(1O)r TIMR(1Olr 

COMMON /RUN/ DELL, DELT. FFDSI FFPRI FFS, KTPTI NL, NTIM, NTOT 
COMMON /SUPSON/ AAST(l0)r AKMK, AMKI, AXl(lO)r A219 

X Dlr DLS, DPP(10)s 
1 EM19 EM29 EMX(1O)r EMY(l0)r FFMK, OMGM, RTI SPR 
DIMENSION PRS(20)r RH0(20), TEMP(2O)r ENT(101, DST(1O)r VEL(10) 
DIMENSION AMK(10)s PLTD(840) 

1 CALL REDY 
KDSTP=l 
IBEG=l 
CALL BNET(NL.1) 
AAST(l)=AMKI 

21 ILST=IBEG+? 
DO 24 1=2,ILST 
TIM(I)=NTOT 
TIM(I)=DELT*TIM(I) 
TIMR(II=TIMO*TIM(I) 
NTOT=NTOT+l 
IF(NTOT-NTIM)23r23,22 

22 ILSTZI-1 
KDSTP=2 
GO TO 28 

23 CONTINUE 
CALL BNET(NL,I) 
DST(I)=DSDT 
AAST(I)=AMOK 

24 CONTINUE 
28 IF(ILST-1)29,87,29 

29 WRITE(6r30) (TIM(I),I=IBEG,ILST) 
30 FORMAT(lOH1 TIM = 8615.6) 

C PRINTED AND PUNCHED OUTPUT 

WRITE(6r330) (TIMR(I)rI=IBEG,ILST) 

WRITE(69340) (DST(I)rI=IBEG,ILST) 

IF(EM1132r36r32 

?30 FORMATtlOHJREL TIM= 8615.6) 

340 FORMAT(1OHJ DSDT = 8615.6) 
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100020 
100030 
100040 
100050 
100060 
100070 
100080 
100090 
100100 
100110 
100120 
100130 
100140 
100150 
100160 
100170 
100180 
100190 
100200 
100210 
100220 
100230 
100240 
100250 
100260 
100270 
100280 
100290 
100300 
100310 
100320 
100330 
100340 
100350 
100360 
100370 
100380 
100390 
100400 
100410 
100420 



32 D O  34 IfIBEGrILST 
34 AAST(I3=AST(AAST(I)rGMMlrGMPl) 

WRITE(6r3501 (AAST(I)rI=IBEG,ILST) 

WRITE(6r360) (AXl(I)rI=IBEGrILST) 

WRITE(6r370) (DPP(I)rI=IBEGrILST) 

WRITE(6r380) ( E M X ( I ) ~ I P I B E G ~ I L S T )  

WRITE(6.390) (EMYII)rI=IBEGrILST) 

3 5 0  FORMAT(1OHJ A/AST = 8615.6) 

3 6 0  FORMATIlOHJ AX/A1 = 8615.6) 

370 FORMAT(1OHJ DP/P = 8615.6) 

380 FORMAT(1OHJ MX = 8G15.6) 

3 9 0  FORMAT(1OHJ MU = 8615.6) 
36 GO TO (56r38)rKTPT 
38 K=O 

DO 39 I=IBEGIILST 
K=K+l 

39 PLTD(K)=TIM(I) 

4 1  D O  4 3  L'lrNL 
IF(EM1141r56r41 

DO 4 3  I=IBEGrILST 
K=K+1 

4 3  PLTD(K)'S(LrI) 
DO 4 5  I=IBEGrILST 
K=K+l 
PLTD(K)=AASTII) 
K=K+1 
PLTD(K)=AXl(I) 
K=K+1 
PLTD(K)=DPP(I) 
K=K+1 

4 5  PLTD(K)=EMX(I) 
5 6  D O  7 3  L-lrNL 

40 F O R M A T ( l H K F 7 . 4 r 2 H R = 8 G 1 5 . 6 )  
WRITE (6r40) Z(L)r (R(LrI),I=IBEGrILST) 

WRITE (6.50) (U(LrI)rI=IBEGrILST) 

WRITE (6.60) (S(LrI)rI=IBEGrILST) 

WRITE(6975) (NIT(LrI),I=IBEGrILST) 

DO 63 I=IBEGrILST 
CNl=EXP(-GAM*S(LrI)) 
R H O ( I ) = C N 1 * R H O 1 * ( R ( L I I ) + + C O N 1 )  
P R S ( I ) = C N l + P R S l * ( R ( L I I ) s x C O N 2 )  
AA=AO*R ( L  r I ) 

ENT(I)=S(LrI)*GAM*RR/AJJ 
VEL(I)-AO*U(L,I) 
AMK(I)=U(LrI)/R(LrI) 

WRITE(6965) (ENT(I)rI=IBEGrILST) 

WRITE(6r70) (RHO(I)rI=IaEGrILST) 

WRITE(6r80) (PRS(I)rI=IBEGrILST) 

WRITE(6r90) (TEMP(I)rI=IBEGrILST) 

WRITE(6r100) (VEL(I)rI=IBEGrILST) 

WRITE(6r110) (AMK(I)rI=IBEGrILST) 

5 0  FORMAT(1OHJ U=8G15 6 1 

60 FORMAT( lOHJ S=8G15.6) 

7 5  FORMAT(1OHJ NITz8G15.6) 

TEMP(1 )=AA*AA/(GAM*GG*RR) 

6 3  CONTINUE 

6 5  FORMAT(1OHJ ENT=8G15.6) 

70 FORMAT ( 1OHJ RHO=8G15.6) 

80 FORMAT( lOHJ PRS=8G15.6) 

90 FORMAT(1OHJ TEMP=8Gl5.6) 

1 0 0  FORMAT(1OHJ VEL=8G15.6) 

100430 
100440 
100450 
100460 
100470 
100480 
100490 
100500 
100510 
100520 
100530 
100540 
100550 
100560 
100570 
100580 
100590 
100600 
100610 
100620 
100630 
100640 
100650 
100660 
100670 
100680 
100690 
100700 
100710 
100720 
100730 
100740 
100750 
100760 
100770 
100780 
100790 
100800 
100810 
100820 
100830 
100840 
100850 
100860 
100870 
100880 
100890 
100900 
100910 
100920 
100930 
100940 
100950 
100960 
100970 
100980 
100990 101000 

101010 
101020 
101030 
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110 FORMAT(1OHJ MOK=8G15.6) 
R ( L  9 1  ) = R  ( L  9 I L S T )  
U ( L  r l  ) = U (  L,I L S T )  
S ( L  r l  ) = S ( L  , I  L S T )  
GO TO ( 7 3 r 6 7 1 , K T P T  

67 DO 69 1 ” I B E C s I L S T  
K = K + l  
P L T D ( K ) = T E M P ( I )  
K=K+1  
P L T D ( K ) = R H O ( I )  
K=K+1  
P L T D ( K ) = P R S , (  I )  
K = K + l  

69 P L T D ( K ) = A M K ( I )  
7 3  CONTINUE 

T I M ( l ) = T I M ( I L S T )  
GO TO ( 8 5 r 7 8 ) , K T P T  

7 8  I F ( I B E G - 1 ) 8 3 , 8 1 , 8 3  
8 1  W R I T E ( 6 9 1 3 0 )  NLI K 

83 C A L L  B C D U M P ( P L T D ( l ) ,  

8 7  GO TO ( 2 1 r 8 8 ) g K D S T P  
88 GO TO ( 9 3 9 9 1 1 , K T P T  
9 1  W R I T E ( 6 9 1 3 0 )  K 
9 3  GO TO 1 

END 

1 3 0  FORMAT(2HB 3 1 5 )  

8 5  I B E G = 2  
L 

SUBROUTINE REDY 
COMMON /CONST/ A 0 9  A J J ,  AKDSI AKPS, AKS, AMOK, C O N l r  CON29 CON39 

1 C X l ,  DSDT, D S D T I ,  GAM, GG, GMM1, GMPl ,  OMGD, OMGP, OMGS, 
2 P R S l r  P R S I L ,  RR, RHO1, 5 3 1 ,  T I M 0  

1 U ( 2 0 , 1 0 ) ,  Z(20) 
COMMON /PROP/ N I T ( 2 0 9 1 0 ) 9  R ( 2 0 , l O ) r  S ( Z S ) r l O ) ,  T I M ( 1 O ) r  T I M R ( 1 0 ) I  

COMMON /RUN/ DELL ,  DELT,  FFDSI FFPR, FFS,  K T P T t  NL,  N T I M ,  NTOT 
C O M M O N / A L N E / A L I M I C A ~ ~ C A ~ , D I S T , S L P I Z L I M ,  

1 C U ( 1 9 ) t C R ( 1 9 ) , C S ( 1 9 ) , C U R P ( 1 9 ) r C U R M ( 1 9 ) ~  
2 Z L ( 2 0 ) 9 R L ( 2 0 ) 9 U L ( 2 0 ) , S L ( 2 0 ) 9 T L ( 2 0 )  

X D1,  DLS,  D P P ’ ( 1 0 ) ,  
1 EM19 EM29 E M X ( l C ) ,  E M Y ( 1 0 ) ,  FFMK, OMGMI RTI SPR 

COMMON /SUPSON/ A A S T ( 1 0 1 ,  AKMK, A M K I I  A X 1 ( 1 0 ) ,  A 2 1 9  

P I = 3 . 1 4 1 5 9 2 7  
c I N I T I A L  I N P U T  AND OUTPUT 

1 R E A D ( 5 9 1 0 )  NL,NTIMINTOT,KPPT 
R E A D ( 5 , 2 0 )  GAM, GG, RRI A J J ,  PRS1, RHO19 A L  
R E A D ( 5 r 2 0 )  AKDS, AKMK, AKPS, AKS, D S D T I  
R E A D ( 5 . 2 0 )  FFDS, FFMK, FFPRI FFSI  DELT, DELL,  EM19 A 2 1  
I F ( D E L L 1 5 9 3 9 5  

3 DCI 4 L=1 ,NL  
4 R E A D ( 5 9 2 0 )  Z ( L ) r  R ( L 9 l ) r  U ( L 9 l ) r  S ( L , l ) t  T I M ( 1 )  

D E L L = Z ( Z ) - Z ( l )  
GO TO 8 

5 R E A D ( 5 9 2 0 )  A Z ,  A R ,  AU, AS, T I M ( 1 )  
C CALCGLATE I N I T I A L  CONSTANTS 

DO 6 L = l r N L  
C N l = L - l  

R ( L  r l  )=AR 
Z ( L ) = A Z + C N l * D E L L  

u ( L  ,1) =Au 

101040 
1 0 1 0 5 0  
1 0 1 0 6 0  
101070 
1 0 1 0 8 0  
101090 
101100 
101110 
1 0 1 1 2 0  
1 0 1 1 3 0  
101140 
1 0 1 1 5 0  
1 0 1 1 6 0  
101170 
1 0 1 1 8 0  
101190 
1 0 1 2 0 0  
1 0 1 2 1 0  
1 0 1 2 2 0  
1 0 1 2 3 0  
1 0 1 2 4 0  
1 0 1 2 5 0  
101260 
1 0 1 2 7 0  
1 0 1 2 8 0  
1 0 1 2 9 0  
1 0 1 3 0 0  

2 0 0 0 2 0  
2 0 0 0 3 0  
2 0 0 0 4 0  
2 0 0 0 5 0  
2 0 0 0 6 0  
2 0 0 0 7 0  
2 0 0 0 8 0  
200090 
2 0 0 1 0 0  
2 0 0 1 1 0  
2 0 0 1 2 0  
2 0 0 1 3 0  
2 0 0 1 4 0  
2 0 0 1 5 0  
2 0 0 1 6 0  
2 0 0 1 7 0  
2 0 0 1 8 0  
2 0 0 1 9 0  
2 0 0 2 0 0  
2 0 0 2 1 0  
2 0 0 2 2 0  
2 0 0 2 3 0  
2 0 0 2 4 0  
2 0 0 2 5 0  
2 0 0 2 6 0  
2 0 0 2 7 0  
2 0 0 2 8 0  
2 0 0 2 9 0  
2 0 0 3 0 0  
2 0 0 3 1 0  
2 0 0 3 2 0  
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6 S ( L t I ) = A S  
8 OMGP=2.*PI*FFPR 

OMGD=Z.*PI*FFDS 
OMGS=2.*PI*FFS 
R 3  I L=R ( 1 9 1 1 
S 3 I = S ( l t l )  
GMMl=GAM-l. 
GMPl=GAM+lo  
CON1=2./GMMl 
CONZ=GAM*CONl 
RHOO=RHOl/GG 
A O = S Q R T ( G A M * P R S 1 * 1 4 4 ~ / R H O O )  
TIMO=ALO/AO 
A M K I = U  ( N L  t 1 ) /R ( N L  r l  1 
AAST(l)=AST(AMKI,GMMl,GMPl) 
W R I T E ( 6 , l O O )  NL, N T I M r  N T O T r  K T P T  

W R I T E ( 6 , l l O )  DELL,  DELT,  P R S l r  R H O l r  ALO 
100 F O R M A T ( 8 H l  N L  = 1 3 1 5 X t 7 H N T I M  = 1 3 9 5 X r 7 H N T O T  1 3 r 5 X t 7 H K T P T  = 1 3 )  

110 FORMAT(8HKDELL = G16*8,3X,7HDELT = G 1 6 . 8 r 3 X r 7 H P R S l  = G16.893Xr  
17HRHO1 = G 1 6 . 8 ~ 3 X , 7 H  LO = G16.8)  

W R I T E ( 6 , 1 2 0 )  GAM9 GGr R R r  A J J  
120  FORMAT(8HK GAM = G 1 6 0 8 r 3 X r 7 H  G = G 1 6 0 8 r 3 X r 7 H  RR = G16.8,7Xr 

1 7 H  J = G16.8)  
W R I T E ( 6 v 1 3 0 )  D S D T I ,  A M K I r  R 3 I L v  S 3 1  

1 3 0  FORMAT(EHKDSDTI= G16.813X97HAMKI  = G 1 6 0 8 t 3 X r 7 H R 3 I L  = G 1 6 0 8 9 3 X ~  
1 7 H  S 3 1  = G16.8)  

W R I T E ( 6 r 1 4 0 )  A K D S r  AKMK, A K P S r  AKS 
140 FORMAT(8HKAKDS = G16.8r7Xr7HAKMK = G16.8r3X17HAKPS = G 1 6 0 8 r 3 X ,  

17H AKS 7 G16.8)  
W R I T E ( S r l 5 0 )  F F D S r  FFMKr  F F P R t  F F S  

1 5 3  FORMAT(8HKFFDS = G 1 6 * 8 t 3 X , 7 H F F N K  = G 1 6 . 8 r 3 X r 7 H F F P R  = G 1 6 0 8 9 3 X 9  
1 7 H  F F S  = G16.8) 

W R I T E ( 6 r l 6 0 )  A A S T ( 1 ) r  A 0 9  E M l r  A 2 1  

1 8 H K  M 1  = G l h 0 8 , 3 X t 7 H A Z / A l =  G16.R) 
160  FORMAT(8HKA/A*  = G 1 6 0 8 9 3 X r 7 H  A 0  = G 1 6 0 8 r / r  

C N l = E X P ( - G A M * S 3 1 )  

CN1=.5*GMMl 
PRSIL=CNl*PRSL*(R3IL**CON2) 

C O N 3 = E X P ( C N l )  
C X l = C N l / G A M  

C D I S T  = D I S T A N C E  BETWEEN 2 P O I N T S  I N  THE GAS C I R C U I T  
D I  S T = D E L L  

C S L P  = THE SLOPE OF THE BASE L I N E  I N  THE GAS C I R C U I T  
SLP=O. 

C A 2 = 1 0  
C C A 2  = SQRT( l .+SLP**Z)  

C A 3 = C A 2 / D I S T  
A L I  M=Z ( 1 )  
Z L I  M=Z ( N L  1 
I F ( E M 1 ) 2 1 r 2 5 , 2 1  

OMGM=2.*PI*FFMK 
DSDT=DSDTI  

2 5  CONTINUE 
10 FORMAT ( 16 I 5  1 

RETURN 
END 

2 1  C A L L  S S B Z ( G A M t G ~ M l r R ~ l r l ) ~ U ~ l r l ~ r S ~ l r ~ . ) )  

20 FORMAT(BE10.0)  

2 0 0 3 3 0  
2 0 0 3 4 0  
200350 
200360 
200370 
200380 
2 0 0 3 9 0  
200400 
2 0 0 4 1 0  
200420 
2 0 0 4 3 0  
200440 
2 0 0 4 5 0  
2 0 0 4 6 0  
200470 
2 0 0 4 8 0  
2 0 0 4 9 0  
2 0 0 5 0 0  
2 0 0 5 1 0  
2 0 0 5 2 0  
2 0 0 5 3 0  
2 0 0 5 4 0  
2 0 0 5 5 0  
2 0 0 5 6 0  
2 0 0 5 7 0  
2 0 0 5 8 0  
2 0 0 5 9 0  
2 0 0 6 0 0  
2 0 0 6 1 0  
2 0 0 6 2 0  
2 0 0 6 3 0  
2 0 0 6 4 0  
2 0 0 6 5 0  
2 0 0 6 6 0  
2 0 0 6 7 0  
2 0 0 6 8 0  
2 0 0 6 9 0  
2 0 0 7 0 0  
2 0 0 7 1 0  
2 0 0 7 2 0  
2 0 0 7 3 0  
2 0 0 7 4 0  
2 0 0 7 5 0  
2 0 0 7 6 0  
2 0 0 7 7 0  
2 0 0 7 8 0  
2 0 0 7 9 0  
2 0 0 8 0 0  
2 0 0 8 1 0  
2 0 0 8 2 0  
2 0 0 8 3 0  
2 0 0 8 4 0  
2 0 0 8 5 0  
2 0 0 8 6 0  
2 0 0 8 7 0  
2 0 0 8 8 0  
2 0 0 8 9 0  
2 0 0 9 0 0  
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SUBROUTINE BNET (NLgI) 

COMMON /PROP/ NIT(20slO)r R(20,10), S(20r10)9 TIM(1O)r TIMR(1O)r 
C ORGANIZATION OF CALCULATIONS ON LINE CORRESPONDING TO TIME I 

1 U(20,lO)r Z(20) 

1 CU(19)sCR(19),CS(19)sCURP(l9)~CURM(l9)~ 
2 Z L ( 2 0 ) s R L ( 2 0 ) , U L ( 2 0 ) , S L ( 2 0 ) ~ T L ( Z O )  

C O M M O N / A L N E / A L I M ~ C A ~ ~ C A ~ , D I S T , S L P I Z L I M I  

LF=HL- 1 
I F ( I - 1 ) 1 0 ~ 1 0 1 1  

1 J=I-1 
C SET UP NET FOR LOCATIONS 1 T O  NL(FINAL LOCATION) 

CALL GASPZ (Z(NI-1, TIM(I), R(NL9I)s U(NLrI)* S(NL,I)* 

DO 8 M=Z,LF 
L =L F+2-M 
CALL GASP (Z(L), TIM(I), R(L*I)r U(L,I)r S(LsI)r NIT(L,I)* L )  

CALL GASPA (Z(1)r TIM(I), R(lsI), U(lrI1, S(lrI), 

1 NIT(NL,I)r TIMR(1)r NLs I )  

8 CONTINUE 

1 NIT(1rI)r TIMR(I)r 191) 
C S E T  UP BASE LINE CONSTANTS T O  B E  USED IN CALCULATING THE NEXT LINE 

10 DO 28 LL=l,LF 
LR=LL+l 
ZL(LL)=Z(LL) 
RL(LL)=R(LL*I) 
UL(LL)=U(LL,I) 
SL(LL)=S(LL*I) 
TL(LL)=TIM(I) 
CU(LL)=U(LRrI)-UL(LL) 

1 4  CU(LL)=CA3*CU(LL) 
16 CR(LL)=R(LR*I)-RL(LL) 
22 CR(LL)=CA3*CR(LL) 
25 CURP(LL)=CU(LL)+CR(LL) 

CURM(LL)=CU(LL)-CR(LL) 
CS(LL)=CA3+(S(LR*I)-SL(LL)) 

28 CONTINUE 
ZL(NL)=Z(NL) 
R L ( N L ) = R ( N L * I )  
UL(NL)=U(NL*II 

TL(NL)=TIM(I) 
RETURN 
END 

SL(NL)=S(NL,I) 

300020 
300030 
300040 
300050 
300060 
300070 
300080 
300090 
300100 
300110 
300120 
300130 
300140 
300150 
300160 
300170 
300180 
300190 
300200 
300210 
300220 
300230 
300240 
300250 
300260 
300270 
300280 
300290 
300300 
300310 
300320 
300330 
300340 
300350 
300360 
300370 
300380 
300390 
300400 
300410 
300420 
300430 
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i 
SUBROUTINE G A S P ( Z 3 , T 3 r R 3 r U 3 r S 3 9 I T , L )  

C BASIC NET POINT CALCULATIONS 
COMMON /CONST/ A09 A J J 9  AKDS, AKPSI AKSI A M O K 9  CON19 CON29 CON39 

1 CXl9 DSDT9 DSDTI9 GAM, GG, GMMlr GMP19 OMGDI OMGPI OMGSI 
2 PRSlr PRSIL, RR, RHOlr 5319 TIM0 

1 CU(19),CR(19)rCS(19)rCURP(l9)9CURM(l9)~ 
2 Z L ( 2 0 ~ r R L ( 2 0 ) r U L ( 2 0 ) r S L O , T L ( 2 O ~ ~ T L ~ 2 0 ~  

COMMON/ALNE/ALIM,CA2rCA3 ~DISTISLP,ZLIM~ 

CRIT=e001 
C INITIAL CALCULATIONS 

KDLN=l 
IT=O 
KDSTP=l 
KLOP=l 
UP3=1000. 
RP3=1000. 
TST2U=l.E+20 
TST2R=loE+20 
U3=UL ( L 1 
R3=RL ( L 1 

C BEGINNING OF LOOP 
5 IT=IT+l 

7 LB=L 
C CALCULATIONS FOR P O I N T  1 

9 LAZLB-1 
C N l x T 3 - T L ( L A ) + S L P * Z L ( L A )  
CNZ=U3+R3+UL(LA)+RL(LA)-CURP(LA)*ZL(LA) 

B B = S L P * C N ~ - C N ~ * C U R P ( L A ) - ~ O  
CC=2.+23-CNl*CNZ 
Z l = Q U A D ( A A , B B 9 C C 9 - 1 . , 2 3 )  
CNl=Zl-ZL(LA) 
Tl=TL(LA)+SLP+CNl 
IF(CN1)12r19,19 

AA-SLP*CURP(LA) 

12 IF(ALIM-Z1)14914rZO 
14 LB=LB-l 

GO TO 8 
19 Ul=UL(LA)+CNi*CU(LA) 

R ~ = R L ( L A ) + c N ~ * c R ( L A )  
S ~ = S L ( L A ) + C N ~ * C S ( L A )  
GO T O  22 

Zl=ALIM 
R E L  T M = T  I MQ*T 1 

KDLN=2 

20 Tl=T3-(Z3-ALIM)*(T3-Tl)/(Z3-Z1) 

CALL G A S P A ( Z l r T l r R l r U l r S l r N D M , R E L T M I L A )  

C CALCULATIONS F O R  P O I N T  z 
22 LB=L 
25 LC=LB+l 

CNl=T3-TL(LB)+SLP*ZL(LB) 
CNZ=U3-R3+uL(LB)-RL(LB)-CURM(LB)*ZL(LB) 

B B = S L P * C N ~ - C N ~ * C U R M ( L B ) - ~ O  
CC=2.+Z3-CNl*CN2 
Z ~ = Q U A D ( A A , B B I C C * ~ O ~ Z ~ )  
CNl=ZZ-ZLtLB) 

IF(Z2-ZL(LC))32r72,27 

AA=SLP*CURM(LB) 

T2=TL(LB)+SLP*CNl 

27 IF(Z2-ZLIM)2892R934 
28 LB=LB+l 

400020 

400040 
400050 

400030 

400060 
400070 
400080 
400090 
400100 
400110 
400120 
400130 

400150 
400160 
400170 
400180 
400190 
400200 
400210 
400220 
400230 
400240 
400250 
400260 
400270 
400200 
400290 
400300 
400310 
400320 
400330 
400340 
400350 
400360 
400370 
400380 
400390 
400400 
400410 
400420 
400430 
400440 
400450 
400460 
400470 
400480 
400490 
400500 
400510 
400520 
400530 
400540 
400550 
400560 
400570 
400500 
400590 
400600 
400610 

400140 
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GO TO 2 5  
3 2  U Z = U L ( L B ) + C N l * C U ( L B )  

R Z = R L ( L B ) + C N l * C R ( L B )  
S Z = S L ( L B ) + C N l + C S ( L B )  
GO .TO 3 7  

Z Z = Z L I M  

KDLN=2 

3 4  TZ=T3-(Z3-ZLIM)*(T3-TZ)/(Z3-22) 

C A L L  G A S P Z ( Z 2 9 T 2 9 R 2 9 U 2 9 S 2 9 N D M 9 L C )  

C CALCULATIONS.  FOR P O I N T  4 
3 7  GO TO ( 3 9 9 4 9 )  9KDLN 
3 9  L B = L  
41  L A S L B - 1  

CNl=U3+UL(LA)-CU(LA)*ZL(LA) 
C N Z = T 3 - - T L ( L A ) + S L P * Z L ( L A )  
A A = C U ( L A ) * S L P  
BB=CNl+SLP-CU(LA)*CNZ-Zo 
CC=Zo*Z3-CNl+CN2 
Z ~ = Q U A D ( A A , B B I C C ~ - ~ O , ~ ~ )  
C N l = Z 4 - Z L ( L A )  
I F ( C N 1 ) 4 5 9 4 7 , 4 7  

GO TO 4 1  

U 4 = U L ( L A ) + C U ( L A ) * C N l  
S 4 = S L ( L A ) + C S ( L A ) * C N l  
GO T O  5 1  

4 5  L B = L B - l  

4 7  T 4 = T L ( L A ) + S L P * C N l  

C ALTERNATE CALCULATIONS FOR P O I N T  4 WHEN BASE SLOPE DOES NOT = 0.  
49 D l Z = S Q R T (  ( T l - T 2 ) * * 2 + ( Z 1 - 2 2 ) * * 2 )  

S L l Z = ( T Z - T l ) / ( Z 2 - Z 1 )  
CNl=SQRT(l~+SL12*SL12)*(U2-Ul)/D12 
CNZ=T3-TZ+SL12*22  
CN3=U3+UZ-CN1+22 
A A = C N l * S L 1 2  
B B = S L l Z + C N 3 - C N l * C N 2 - 2 .  
C C = Z O * Z ~ - C N ~ * C N ~  
Z ~ = Q U A D ( A A , B B ~ C C ~ - ~ O ~ Z ~ )  
CNZ=Z 2 -2  4 
T4=T2-SL12*CN2 
U4=U2-CNl *CNZ 
S ~ = S ~ - C N ~ * S Q R T ( ~ O + S L ~ ~ * S L ~ ~ ) * ( S ~ - S ~ ) / D ~ ~  
K D L N = 1  

C CALCULATE 5 3  
5 1  S 3 = S 4 + D S D T * ( T 3 - T 4 1  

GO TO ( 5 4 9 5 7 ) 9 K L O P  
C CALCULATE U3 

5 4  P l = R 1 * 2 o / G M M l + U l  
Q2=R2*2o /CMMl -U2  
R 1 3 = . 5 * ( R l + S 3 )  
P3=Pl+R13*(GMMl*DSDT*(T3-Tl)+(S3-S1) 
R 2 3 = 0 5 * ( R 2 + R 3 )  
Q3=QZ+R23*(GMMl*DSDT*(T3-TZ)+(S3-S2) 
U 3 = 0 5 * ( P 3 - Q 3 )  
KLOP=2 
G O  TO 7 

C CALCULATE R3 
5 7  Q 2 = R 2 * 2 * / G M M l - U 2  

R 2 3 = . 5 * ( R 2 + R 3 )  
Q3=Q2+R23*(CMMl+DSDT*(T3-T2)+(S3-S2) 

R3=.5* [Q3+U3) *GMMl  
K L O P = l  

4 0 0 6 2 0  
4 0 0 6 3 0  
400640 
4 0 0 6 5 0  
400660 
400670 
4 0 0 6 8 0  
400690 
400700 
400710 
4 0 0 7 2 0  
4 0 0 7 3 0  
400740 
4 0 0 7 5 0  
4 0 0 7 6 0  
4 0 0 7 7 0  
4 0 0 7 8 0  
4 0 0 7 9 0  
4 0 0 8 0 0  
4 0 0 8 1 0  
4 0 0 8 2 0  
4 0 0 8 3 0  
4 0 0 8 4 0  
4 0 0 8 5 0  
4 0 0 8 6 0  
4 0 0 8 7 0  
4 0 0 8 8 0  
4 0 0 8 9 0  
400900 
4 0 0 9 1 0  
4 0 0 9 2 0  
4 0 0 9 3 0  
400940 
4 0 0 9 5 0  
400960 
4 0 0 9 7 0  
4 0 0 9 8 0  
4 0 0 9 9 0  
4 0 1 0 0 0  
4 0 1 0 1 0  
4 0 1 0 2 0  
4 0  1 0 3 0  
40 1 0 4 0  
4 0 1 0 5 0  
4 0 1 0 6 0  
4 0 1 0 7 0  
4 0 1 0 8 0  
401 0 9 0  
4 0 1 1 0 0  
4 0 1 1 1 0  
4 0 1 1 2 0  
4 0 1 1 3 0  
4 0 1 1 4 0  
4 0 1 1 5 0  
4 0 1 1 6 0  
4 0 1 1 7 0  
4 0 1 1 8 0  
4 0 1 1 9 0  
4 0 1 2 0 0  

4 0 1 2 2 0  
4 0 1 2 1 0  
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C TEST FOR CONVERGENCE OF U3 AND R 3  
T S T l U = A B S ( U 3 - U P 3 )  
T S T l R z A B S ( R 3 - R P 3 )  
I F ( T S T l U - C R I T ) 6 2 r 6 5 , 6 5  

62 I F ( T - S T l R - C R I T ) 9 5 , 6 5 r 6 5  
65 I F ( T S T 2 U - T S T l U ) 7 1 , 7 1 , 6 7  
67 I F ( T S T 2 R - T S T l R ) 7 3 , 7 3 , 8 4  
7 1  W R I T E ( 6 9 6 0 0 )  239 T 3  

600 FORMAT(28HK*  U IS NOT CONVERGING AT Z ~ G 1 6 0 8 r 5 X r 2 H T ~ C 1 6 0 8 )  
GO TO 75 

77 W R I T E ( 6 r 6 1 0 )  Z 3 r  T 3  

7 5  CONTINUE 
76 W R I T E ( 6 9 5 0 )  Z l r  R l r  U1, S1, T 1  

W R I T E ( 5 9 6 0 )  229 R 2 9  U2r  5 2 9  T Z  
W R I T E ( 6 r 6 0 )  I T *  Z 4 r  U49 S 4 r  T 4  
W R I T E ( 6 r 6 0 )  P l r  Q2, P 3 r  Q3 
W R I T E ( 6 r 6 0 )  2 3 ,  R 3 9  U 3 9  S 3 r  T 3  

6 1 U  FORMAT(28HK*  R IS NOT CONVERGING AT Z = G 1 6 0 8 , 5 X r 2 H T = C 1 6 0 8 )  

5 0  FORMAT(4HL+* 5 6 2 0 0 8 )  
60 F O R M A T ( 4 H J  5 G 2 0 0 8 1  
82  GO TO ( 8 4 r 9 6 ) r K D S T P  
8 4  UP3=U3 

RP3=R3 
T S T Z U = T S T l U  
T S T Z R P T S T l R  
GO TO 5 

9 5  CONTINUE 
96 I F ( U 3 - R 3 ) 1 0 1 r l O l r 9 8  
98 W R I T E ( 6 r 7 0 ) U 3 r R 3 , 2 3 r T 3  
70 FORMAT(30HL*+ STOP SUPERSONIC FLOW U = G 1 6 0 6 r 5 X ~ 2 H R = G 1 6 0 6 9  

1 5 X 9 6 H A T  2 3 = G 1 6 0 6 , 5 X r 7 H A N D  T 3 x G 1 6 . 6 )  
STOP 

END 
101 RETURN 

SUBROUTINE GASPA ( Z ~ ~ T ~ , ' R ~ , U ~ ~ S ~ , I T I R E L T M I L I I )  

COMMON /CONST/ AOr  A J J ,  AKDS, A K P S r  A K S r  AMOK, C O N l r  CON29 CON39 
C L E F T  BOUNDARY C A L C U L A T I O N S  

1 CX1,  DSDT, D S D T I ,  GAM, GG, GMM1, G M P l r  OMGD, OMGPr OMGS, 
2 P R S l r  P R S I L r  RRI R H O l r  S 3 I r  T I M 0  

1 C U ( 1 9 ) r C R ( 1 9 ) r C S ( 1 9 l , C U R P ( l 9 ) ~ C U R M ( l 9 ) ~  
2 Z L ( 2 O ) r R L ( 2 0 ) r U L ( 2 0 1 r S L ( 2 0 ) r T L ~ 2 0 )  

C O M M O N / A L N E / A L I M ~ C A 2 r C A 3 , 0 I S T , S L P , Z L I M r  

C R I T = o 0 0 1  
c I N I T I A L  C A L C U L A T I O N S  
C C A L C U L A T I O N S  FOR 53 AND R 3  

C N l = S I N ( O M G P * R E L T M )  
PRS3=PRSIL+CNl*AKPS*PRSIL 
C N Z = ( P R S 3 / P R S l ) * * C X l  
C N l = S I N ( O M G S * R E L T M I  
S 3 = 5 3 I + A K S * C N 1 * 5 3 1  
R3=CNZ*(CON3**S3)  
I F ( U L ( l ) - R L ( 1 ) ) 4 , 2 r 4  

401230 
40 1240 
4 0 1 2 5 0  
401260 
401270 
4 0 1 2 8 0  
401290 
401300 
401310 
401320 
401330 
401340 
4 0 1 3 5 0  
401360 
401370 
4 0 1 3 8 0  
401390 
401400 
401410 
401420 
401430 
40 1440 
4 0 1 4 5 0  
401460 
401470 
4 0 1 4 8 0  
401490 
4 0 1 5 0 0  
401510 
4 0 1 5 2 0  
4 0 1 5 3 0  
40 1 5 4 0  
4 0 1 5 5 0  
401560 

5 0 0 0 2 0  
5 0 0 0 3 0  
5 0 0 0 4 0  
5 0 0 0 5 0  
5 0 0 0 6 0  
5 0 0 0 7 0  
5 0 0 0 8 0  
5 0 0 0 9 0  
5 0 0 1 0 0  
500110 
5 0 0 1 2 0  
5 0 0 1 3 0  
5 0 0 1 4 0  
5 0 0 1 5 0  
500160 
5 0 0 1 7 0  
5 0 0 1 8 0  
5 0 0 1 9 0  
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2 zZ=zL(l) 
T2=TL( 1 )  
u2=uL( 1 )  
R2=RL( 1 )  
sZ=sL ( 1 ) 
Q2=R2*2*/GMMl-U2 
R23=.5*(RZ+R3) 
Q3=Q2+R23*(S3-S2) 

GO TO 25 
U3=2o*R3/GMMl-Q3 

4 IT=O 
UP3-1000. 
KDS'TP=i 
TST2=1.E+20 
u3=uL ( L 1 

C BEGINNING OF LOOP 

C CALCULATIONS FOR POINT 2 
5 IT=IT+l 

LB=L 
8 LC=LB+l 

CNl=T3-TL(LB)+SLP*ZL(LB) 
CN2=U3-R3+UL(LB)-RL(LB)-CURM(LB)*ZL(LB; 
AA=SLP*CURM(LB) 
BB=SLP*CN2-CNl *CURM(LB) -Z*  
CC=Ze*Z3-CNl*CN2 
Z Z = Q U A D ( A A I B B , C C , ~ O ~ Z ~ )  
IF(Z2-ZL(LC))12r12rlO 

10 LB=LB+l 
GO TO 8 

T2=TL(LB)+SLP*CNl 
UZ=UL(LB)+CNl*CU(LB) 
R2=RL(LB)+CNl*CR(LB) 
S2=SL(LB)+CNl*CS(LB) 
QZ=R2*2*/GMMl-U2 

12 CN1=22-ZL(LB) 

C CALCULATE U3 
R23=.5*(RZ+R3) 
Q 3 = Q 2 + R 2 3 * ( G M M l * D S D T * ( T 3 - T 2 ) + ( S 3 - S 2 ) )  
U3=2.*R3/GMMl-Q3 

TSTl=ABSIU3-UP3) 
!F(TSTl-CRIT)25915915 

15 IF(TST2-TST1)16,17,17 
16 WRITE(6950) 229 R29 U2r S2r T2 

WRITf(6960) IT, Q29 Q 3  
WRITE(6960) 23, R39 U39 539 T3 

C TEST FOR CONVERGENCE OF U3 

50 FORMAT(4HL** 5620.8) 
60 FORMAT(4HJ 5620.8) 

17 UP3=U3 
GO TO (1792619KDSTP 

TST2=TST1 
GO TO 5 

25 IF(U3-R3)34,34933 
33 U3=R3 
3 4  CONTINUE 
26 RETURN 

END 

500200 
500210 
500220 
500230 
500240 
500250 
500260 
500270 
500280 
500290 
500300 
500310 
500320 
500330 
500340 
500350 
500360 
500370 
500380 
500390 
500400 
500410 
500420 
500430 
500440 
500450 
500460 
500470 
500480 
500490 
500510 500500 

500520 
500530 
500540 
500550 
500560 
500570 
500580 
500590 
500600 
500610 
500620 
500630 
500640 
500650 
500660 
500670 
500680 

500700 
500710 
500720 
500730 
500740 
500750 
500760 

500690 
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SUBROUTINE 'CASPA ( Z ~ T T ~ ~ R ~ ~ U ~ ~ S ~ ~ I T I R E L T M I L I I ~  

COMMON /CONST/ A 0 9  AJJI AKDSI AKPSI AKSI AMOK9 CON19 CON29 CON39 
c L E F T  BOUNDARY SUBROUTINE FOR THE SUPERSONIC BUZZ PROGRAM 

1 C X l 9  DSVTI D S D T I I  CAM9 GCI G M M l r  GMP19 OMGD, OMGPI OMGS, 
2 PRS19 P R S I L I  RRI RHO19 S 3 I 9  T I M 0  

1 C U ( 1 9 ) ~ C R ( 1 9 ) r C S ( l 9 ) r C U R P o r C U R M ( l 9 ) ~  
2 Z L ( 2 0 ) r R L ( 2 0 ) ~ U L ( 2 0 ) r S L O r T L ( 2 O ) ~ T L f 2 0 )  

X D I T  DLSI D P P ( 1 0 ) 9  
1 EM19 EM29 E M X ( l O ) r  E M Y ( 1 O ) r  FFMKI OMGMI RTI SPR 

C O M M O N / A L N E / A L I M I C A ~ ~ C A ~ ~ D I S T , S L P , Z L I M ~  

COMMON /SUPSON/ A A S T f 1 0 ) .  AKMK, AMKI I  A X l ( l 0 ) r  A 2 1 9  

CR I T=a 001 
C I N I T I A L  CALCULATIONS 

CNN=CMPl /CMMI  
I F ( U L ( l ) - R L ( 1 ) ) 4 r 2 9 4  

2 Z Z = Z L ( l )  
T Z = T L ( l )  
U2=UL ( 1) 
R 2 = R L ( 1 )  
S 2 = S L  ( 1  1 
Q2=R2*2a/GMMl-U2 
R23= .5* (RZ+R3)  
Q 3 = Q 2 + R 2 3 * ( S 3 - S 2 )  
U3=2a*R3/GMMl-Q3 
GO TO 2 5  

K D S T P = l  
4 I T = O  

T S T 2 = l a E + 2 0  
Q 3 = 2 a * R L ( L ) / G M M I . - U L ( L )  
Y Y l = O a  
X X l = a 9 9 * Q 3  
QP3=Q3 

5 I T = I T + 1  
XX2=Q3 

C B E G I N N I N G  OF LOOP 

C CALCULATIONS FOR RIUI AND S . A T  D IFFUSER E X I T  
R 3 = Q 3 + S Q R T ( C N N * R T * R T - a 5 * G M M I . * Q 3 * Q 3 )  
R3=R3/CNN 

EM3=U3/R3  
U3=2.*R3/GMMl-Q3 

D3=1a+a5+GMMl*EM3*EM3 
D 3 = E M 3 / ( D 3 * * ( - 5 * C N N ) )  
D S R = A L O G ( A 2 1 * D 3 / D l )  
DLS=DSR/CAM 
S3=SPR+DLS 

L B = L  
8 L C = L B + l  

c CALCULATIONS FOR P O I N T  2 

C N l = T 3 - T L ( L B ) + S L P * Z L ( L B )  
C N 2 = U 3 - R 3 + U L ( L B ) - R L ( L B ) - C U R M ( L B ) * Z L ( L B )  

BB=SLP*CN2-CNl+CURM(LB)-2a 
CC=2 a * 23-C N1 *CN2 
Z ~ = Q U A D ( A A I B B ~ C C ~ ~ ~ ~ Z ~ )  
1 F ( Z 2 - Z L ( L C ) ) 1 2 , 1 2 1 1 0  

AA=SLP*CURM(LB)  

10 L B = L B + l  
GO TO 8 

T Z = T L ( L B ) + S L P * C N l  
U 2 = U L ( L B ) + C N ? * C U ( L B I  
R Z = R L ( L B ) + C N l * C R ( L B )  
S 2 = S L ( L B ) + C N l * C S ( L B )  

1 2  C N l = Z Z - Z L ( L B )  

Q2=R2*2a /GMMl -U2  

6 0 0 0 2 0  
6 0 0 0 3 0  
600040 
6 0 0 0 5 0  
600060 
6 0 0 0 7 0  
6 0 0 0 8 0  
600090 
600100 
600110 
6 0 0 1 2 0  
6 0 0 1 3 0  
600140 
6 0 0 1 5 0  
6 0 0 1 6 0  
600170 
6 0 0 1 8 0  
600190 
6 0 0 2 0 0  
6 0 0 2 1 0  
6 0 0 2 2 0  
6 0 0 2 3 0  
6 0 0 2 4 0  
6 0 0 2 5 0  
6 0 0 2 6 0  
6 0 0 2 7 0  
6 0 0 2 0 0  
6 0 0 2 9 0  
6 0 0 3 0 0  
6 0 0 3 1 0  
6 0 0 3 2 0  
6 0 0 3 3 0  
6 0 0 3 4 0  
6 0 0 3 5 0  
6 0 0 3 6 0  
6 0 0 3 7 0  
6 0 0 3 8 0  
6 0 0 3 9 0  
6 0 0 4 0 0  
6 0 0 4 1 0  
6 0 0 4 2 0  
6 0 0 4 3 0  
6 0 0 4 4 0  
6 0 0 4 5 0  
6 0 0 4 6 0  
6 0 0 4 7 0  
6 0 0 4 0 0  
600490 
6 0 0 5 0 0  
6 0 0 5 1 0  
6 0 0 5 2 0  
6 0 0 5 3 0  
6 0 0 5 4 0  
6 0 0 5 5 0  
6 0 0 5 6 0  
6 0 0 5 7 0  
6 0 0 5 0 0  
6 0 0 5 9 0  
6 0 0 6 0 0  
6 0 0 6 1 0  
6 0 0 6 2 0  
6 0 0 6 3 0  
6 0 06 40 
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R23=.5* (RZ+R3)  
Q3=Q2+R23*(GMMl+DSDT*(T3-T2)+(S3-S2)) 

YYZ=Q3-QP3 

I F ( T S T l - C R I T ) 2 5 , 1 7 , 1 7  

Q3=(XXl*YYZ-XXZ*YYl)/(YY2-YYl) 
YY 1 =Y Y 2 
X X l = X X 2  
T S T Z = T S T l  
GO TO. 5 

C TEST ON CONVERGENCE OF THE Q C O M P A T I B I L I T Y  R E L A T I O N  

T S T l = A B S ( Y Y 2 / Q 3 )  

17  QP3=Q3 

25 I F ( U 3 - R 3 ) 3 4 , 3 4 , 3 3  
33  U3=R3 
3 4  CONTINUE 
26 E M X ( I ) = F M X ( E M l , D S R , G A M I G M M 1 , G M P l )  

C N l = E M X ( I ) * E M X ( I )  
DX=1.+.5*GMMl*CNl 
DX=EMX( I ) / ( D X * * ( * 5 * C N N )  1 

C C A L C U L A T I O N  FOR SHOCK L O C A T I O N  
A X l ( I ) = D l / D X  
I F ( l . - A X 1 ( 1 ) ) 4 6 , 4 6 , 4 2  

42 WRITE ( 6  970 
70 FORMAT(26HL**  A X / A 1  I S  LESS THAN 1.) 
44 STOP 
46 I F ( A X l ( I ) - A 2 1 ) 4 9 , 4 9 r 4 7  
47 W R I T E ( 6 t 8 0 )  
8 0  FORMAT(32HL**  A X / A 1  I S  GREATER THAN A 2 / A 1 )  

GO T O  44 

E M Y S T = l * / E M X S T  

EMY(I)=SQRT(2.*CNl/(GMPl-GMMl*CNl)) 

49 EMXST=SQRT(GMPl*CNl/(Zo+GMMl*CNI.)) 

CNl=EMYST*EMYST 

C C A L C U L A T I O N  FOR PRESSURE RECOVERY 
D P P ( I ) = A Z l * D 3 / D l - l .  
RETURN 
END 

SUBROUTINE GASP2 ( 2 3 ~ T 3 , R 3 r U 3 , S 3 , I T 9 R E L T M , L , I )  

COVMON /CONST/ A 0 9  A J J ,  AKDSI AKPSI AKS, AMOK, CON19 C O N 2 9  CON39 
C R I G H T  BOUNDARY CALCULATIONS 

1 CX1, DSDT, D S D T I ,  GAM, GG, GMM1, GYP19 OMGD, OMGP, OMGS, 
2 P R S l r  P R S I L ,  RR, RHO19 S 3 1 1  T I M 0  

1 C U ( 1 9 ) , C R ( 1 9 ) r C S ( 1 9 ) , C U R P ( 1 9 ) , C U R M ( 1 9 ) ,  
2 Z L ( 2 0 ) , R L ( 2 0 ) , U L ( 2 0 ) r Z L ( 2 O ) , T L ( 2 0 )  

X D1, DLS,  D P P ( 1 0 1 9  
1 EM19 EM29 E P X ( 1 0 ) v  EMY(l.01, FFMK, OMGM, RT ,  SPR 

COMMON/ALNE/AL I M  9 CA2 9CA3 ,DI ST  ,SLP t Z L I  M 9 

COMMON /SUPSON/ A A S T ( 1 O ) r  AKMK, AMKI ,  A X l ( 1 O ) r  A 2 1 9  

‘3 I 1  U 3  I S  NOT KNOWN, F I N D  U39  R 3 9  AND 53 
C R I T = . 0 0 1  

C I N I T I A L  CALCULATIONS 
I T = O  

K D S T P = l  
R P 3 = 1 0 0 0 .  

LM=L-1  
T S T 2 = 1 * E + Z O  
A M O K = A Y K I + A K M K * S I N ( O M G ~ * R E L T P I )  
DSDT=DSDTI+AKDS*SIN(OMGD*RELTM) 

6 0 0 6 5 0  
600660 
600670 
600680 
600690 
600700 
600710 
600720 
600730 
600740 
6 0 0 7 5 0  
600760 
600770 
600780 
600790 
6 0 0 8 0 0  
6 0 0 8 1 0  
6 0 0 8 2 0  
6 0 0 8 3 0  
600840 
6 0 0 8 5 0  
6 0 0 8 6 0  
6 0 0 8 7 0  
6 0 0 8 8 0  
600890 
600900 
600910 
600920 
600930 
600940 
600950 
600960 
600970 
6 0 0 9 8 0  
600990 
601000 
601010 

700020 
700030 
700040 
7 0 0 0 5 0  
700060 
700070 
7 0 0 0 8 0  
700090 
700100 
700110 
7 0 0 1 2 0  
700130 
700140 
7 0 0 1 5 0  
700160 
700170 
700180 
700190 
7 0 0 2 0 0  
700210 
7 0 0 2 2 0  
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R3=RL (L 1 
U3=AMOK*R3 

C BEGINNING OF LOOP 

C CALCULATIONS FOR POINT 4 
5 IT=IT+l 

LB=L 
7 LA=LB-1 

CNl=U3+UL(LA)-CU(LA)*ZL(LA) 
CNZrT3-TL(LA)+SLP*ZL(LA9 

BB=CNl*SLP-CU(LA)*CNZ-Zo  
CC=2.*23-CNl+CNZ 
Z ~ = Q U A O ( A A ~ B B I C C I - ~ O , ~ ~ )  
IF(ZL(LA)-Z4)9r9,8 

AA=CU ( LA 1 *SLP 

8 LB=LB-1 

9 CNl=Z4-ZL(LA) 
GO TO 7 

T4=TL(LA)+SLP*CNl 
U4=UL(LA)+CU(LA)*CNl 
S4=SL(LA)+CS(LA)+CNl 
S3=S4+DSDT*(T3-T4) 

LB=L 
11 LA=LB-l 

CNl=T3-TL(LA)+SLP*ZL(LA) 
CN2=U3+R3+UL(LA)+RL(LA)-CURP(LA)*ZL(LA) 

B B = S L P * C N ~ - C N ~ * C U R P ( L A ) - ~ S  
CC=Zo*Z3-CNl*CN2 
Z l = Q U A D ( A A t B B r C C r - 1 . , 2 3 )  
CNl=Zl-ZL(LA) 
IF(CN1)12r13,13 

C CALCULATIONS FOR POINT 1 

AA=SLP*CURP(LA) 

12 LB=LB-1 
GO TO 11 

Ul=UL(LA)+CNl*CU(LA) 
R~=RL(LA)+cN~*cR(LA) 
Sl=SL(LA)+CNl+CS(LA) 

C CALCULATIONS FOR U3 AND R3 

13 Tl=TL(LA)+SLP*CNl 

Pl=Rl*2./GMMl+Ul 

R13=.5*(Rl+R3) 
P3=Pl+Rl3*(GMMl*DSDT*(T3-Tl)+(S3-S1)) 
U3=2o/(GMMl*AMOK) 
U3=P3/(1*+U3) 
R3=U3/AMOK 
TEST FOR CONVERGENCE OF 43 
TSTl=ABS(R3-RP3) 
IF(TSTl-CRIT)25,15r15 

15 IF(TST2-TST1)16,17*17 
16 WRITE(6r50) Zlr Rlr Ulr Slr T1 

WRITE(6960) IT, Z4r U4r 549 T4 
WRITE(6r60) Plr P3 
WRITE(6r60) 239 R3r U3r 539 T3 

50 FORMAT(4HL** 562008) 
60 FORMAT(4HJ 5G2C.8) 

GO TO (17r26)rKDSTP 
17 RP3=R3 

TST2=TST1 
GO TO 5 

25 CONTINUE 
26 RETURN 

END 

700230 
700240 
700250 
700260 
700270 
700280 
700290 
700300 
700310 
700320 
700330 
700340 
700350 
100360 
100370 
700380 
700390 
700400 
700410 
700420 
700430 
700440 
700450 
700460 
700470 
700480 
700490 
700500 
700510 
700520 
700530 
700540 
700550 
700560 
700570 
700580 
700590 
700600 
700610 
700620 
700630 
700640 
700650 
700660 
700670 

700690 
700700 
700710 
700720 
700730 
700740 
700750 
700760 
700770 
700780 
700790 

700810 

700680 

7ooaoo 

700a20 
700830 
700840 
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SUBROUTINE SSBZ (GAM,GMMl,RZ,U2rS2) 

COMMON /SUPSON/ A A S T ( 1 O ) r  AKMK, AMKI ,  A X 1 ( 1 0 ) ,  A 2 1 9  
C I N I T I A L  CALCULATIONS FOR THE SUPERSONIC D I F F U S E R  PROBLEM 

X D1, DLS, D P P ( l O ) r  
1 EM19 EM29 E M X ( 1 0 ) ,  E M Y ( 1 0 ) 9  FFMKI OMGM, RTI SPR 

GMPl=GAM+lo  
EM2=U2 /R2 
PHE=RZ*R2* (2o /GMMl+EMZ*EM2)  
RT=SQRT(o5*GMMl*PHE)  
C N l = o 5 + G M P l / G M M l  
D 1 = 1 o + o 5 + G M M l + E M l * E M l  
D l = E M l / ( D l * + C N l )  

D Z = E M 2 / ( D Z * * C N l l  
D S R = A L O G I A 2 1 * D Z / D l )  
DLS=DSR/GAM 

D2=1o+o5+GMMl*EMZ*EM2 

SPR=SZ-DLS 
G M X = o 5 * ( 1 o + E M l )  
E M X ( l ) = F M X ( C Y X , D S R , G A M I C M M 1 , C M P l )  
C N 2 = E M X ( l ) * E M X ( l )  

D X = E M X ( l ) / ( D X + * C N l )  
A X 1  ( 1  ) = D l / D X  

D X = l o + o 5 + G M M l * C N Z  

EMXST=SQRT(GMPl+CN2/(2o+GMMl+CN2)) 
E M Y S T = l o / E M X S T  
CNZ=EMYST+EMYST 
E M Y ( I ) = S Q R T ( ~ O * C N ~ / ( G M P ~ - G M M ~ * C N ~ ) )  
D P P ( l ) = A Z l * D Z / D l - l o  
WRITE ( 6  9 10 1 

1 0  F O R M A T ( 4 8 H L  I N I T I A L  OUTPUT FOR THE SUPERSONIC BUZZ PROGRAM) 
W R I T E ( 6 r 2 0 )  A X l ( l ) r  EM29 E M X ( 1 1 ,  E M Y ( 1 )  

2 0  F O R M A T ( 8 H J A X / A l =  G1608,3X,7H M2 = G 1 6 0 8 , 3 X , 7 H  MX = G 1 6 0 8 , 3 X ,  
1 7 H  M Y  = G16.8)  

W R I T E ( 6 r 3 0 )  DLS, RT, SPR, D P P ( 1 )  
30 FORMAT(8HK DLS = G1608,3X,7H R T  = G16.813X,7Y SPR = G 1 6 0 8 , 3 X *  

1 7 H D P / P  = G16.8)  
RETURN 
END 

800020 
8 0 0 0 3 0  
8 00040 
8 0 0 0 5 0  
8 0 0 0 6 0  
8 0 0 0 7 0  
8 0 0 0 8 0  
800090 
800100 
8 0 0 1 1 0  
8 0 0 1 2 0  
8 0 0 1 3 0  
8 0 0 1 4 0  
8 0 0 1 5 0  
8 0 0 1 6 0  
8 0 0 1 7 0  
8 0 0 1 8 0  
8 0 0 1 9 0  
8 0 0 2 0 0  
8 0 0 2 1 0  
8 0 0 2 2 0  
8 0 0 2 3 0  
8 0 0 2 4 0  
8 0 0 2 5 0  
8 0 0 2 6 0  
8 0 0 2 7 0  
8 0 0 2 8 0  
8 0 0 2 9 0  
8 0 0 3 0 0  
8 0 0 3 1 0  
8 0 0 3 2 0  
8 0 0 3 3 0  
8 0 0 3 4 0  
8 0 0 3 5 0  
8 0 0 3 6 0  
8 0 0 3 7 0  
8 0 0 3 8 0  
8 0 0 3 9 0  

58 



F U N C T I O N  F M X ( G M X I D S R , C A M v G M M l , G M P 1 )  

C R I T = . 0 0 0 1  
I T = O  
EMXPR=l.E+ZO 
EMX=GMX 
CNl=GAM/GMMl 
CNZ=GMMl /GMPl  

CN3=EMX*EMX 

C C A L C U L A T I O N  OF SHOCK MACH NUMBER FROM A KNOWN ENTROPY R I S E  

1 I T = I T + l  

F=ALOG(2./(GMPl*CN3)+CN2) 
F=ALOG(2.*GAM*CN3/GMPl-CN2)/GMMl+CNl*F-DSR 
FPR=EMX/(2.*GAM*CN3-GMMI) 
FPR=FPR-l./(EYX*(2.+GYVl*CN3) 1 
FPR=4.*CNl*FPR 
TEST=ABS(EMX-EMXPR) 
I F ( T E S T - C R I T ) 5 * 5 r 4  

4 EMXPR=EMX 
EMX=EMX-F/FPR 
GO TO 1 

5 FMX=EMX 
RETURN 
END 

F U N C T I O N  AST(AMK,GMMl,CMPl) 

AST=.5*AMK*AMK*GMMl+lo 
C C A L C U L A T I O N  FOR C R I T I C A L  AREA R A T I O  

AST=Z.*AST/GMPi 
CN1=. 5*GMPlJGMM1 
A S T = ( A S T * * C N l ) / A M K  
RETURN 
END 

F U N C T I O N  QUAD(AAIBB,CC,SGN,CLOS) 

I F ( A A 1 8 9 5 r 8  
5 QUAD=-CC/BG 

GO TO 2 0  
8 WRK=Z.*AA 

C S O L U T I O N  FOR QUADRATIC EQUATION 

DISC=SQRT(BB*BB-4.*AA*CC)/WRK 
WRK=-BB/WRK 

X2zWRK-DISC 
T S T l = S G N * ( X l - C L O S )  
I F ( T S T 1 ) 1 6 , 1 0 ~ 1 0  

1? TST2=SGN+(XZ-CLOS) 
. I F ( T S T 2 ) 1 4 , 1 2 r 1 2  
1 2  I F ( T S T l - T S T 2 ) 1 4 , 1 4 r l 6  
14 Q U A D = X l  

16 QUAD=X2 
2 0  RETURN 

END 

X1=  WRK+DI SC 

GO TO 2 0  

900020 
(DSR 1 900030 

9 00040 
9 0 0 0 5 0  
900060 
900070 
9 0 0 0 8 0  
900090 
900100 
900110 
900120 
900130 
900140 
9 0 0 1 5 0  
900160 
900170 
9 0 0 1 8 0  
900190 
9 0 0 2 0 0  
9 0 0 2 1 0  
9 0 0 2 7 0  
9 0 0 2 3 0  
9 0 0 2 4 0  

1000020 
1000030 
1000040 
1 0 0 0 0 5 0  
1000060 
1000070 
1 0 0 0 0 6 0  
1000090 

1 1 0 0 0 2 0  
1100030 
11 00040 
1 1 0 0 0 5 0  
1100060 
1100070 
1100080 
1100090 
1100100 
11001 10 
1 1 0 0 1 2 0  
11 001 30 
1100140 
1 1 0 0 1 5 0  
1100160 
1100170 
1 1 0 0 1 8 0  
1100190 
1100200 
11002 10 
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APPENDIX D 

COMPUTER PROGRAM FOR NONSTEADY LIQUID FLOW 

The following is the computer program used for the example for liquid dynamics. It 
is given for reference purposes only. This program may be compared to the program in 
reference 3. 

COMMON / C H I N /  AKr  A K K ( 1 1 ) r  CNKHr LBEGr  L L S T r  L L 2 9  I N C ( l 0 ) r  

COMMON /RUNWH/ A K H ( 2 0 ) r  A K A P T ( 2 0 ) r  A R E A ( 1 0 ) r  D E L T r  
1 KDSTPr  K T Q H r  NSAVI NTOTr  T I M ( 1 0 ) r  TMPD 

1 H L ( l l r 2 O ) r  H R ( l l r 2 0 ) r  K S T ( 1 l ) r  K T R L ( 1 0 ) r  N I N T ,  N P T S r  
2 Q Q ( 1 1 9 2 0 ) r  SX(1O)r SY(1O)r T M E ( 2 O )  

1 ( K T 4 s K T R L ( 4 ) ) r  ( K T 5 r K T R L ( 5 ) )  
EQUIVALENCE ( K T l r K T R L ( 1 ) ) r  ( K T 2 t K T R L ( 2 ) ) r  ( K T S r K T R L ( 3 ) ) r  

5 C A L L  WHIN 
C CALCULATE CONTROLS TO DETERMINE WHEN I N I T I A L  WAVE ARRIVES A T  EACH 
C L O C A T  I ON 

DO 1 4  I = l r 5  
KST ( I 1 =1 
I F ( K T 5  - 1 ) l l r E r l O  

8 K S T ( I ) = 2  
GO TO 1 4  

K F I  N = K T 5 - 1  
GO TO 12 

KF I N = I  -1 

1 0  K I N = I  

11 K I N = K T 5  

1 2  DO 1 3  K Z K I N r K F I N  
1 3  K S T ( I ) = K S T ( I ) + I N C ( K )  
14 CONTINUE 

KDSTP= 1 
NTOT=O 
LBEG= 1 

1 8  L L S T = L B E G + 7  
C A L L  WHAM 
GO TO ( 3 8 1 3 8 r 4 8 ) r K D S T P  

GO TO ( 4 5 r 4 8 ) r K D S T P  
38 C A L L  WHOUTlKDSTP) 

4 5  L B E G = L L Z  
GO TU 18 

4 8  GO TO 5 
END 

1 0 0 0 1 0  
1 0 0 0 2 0  
1 0 0 0 3 0  
100040 
1 0 0 0 5 0  
100060 
100070 
1 0 0 0 8 0  
100090 
1 0 0 1 0 0  
1 0 0 1 1 0  
1 0 0 1 2 0  
1 0 0 1 3 0  
1 0 0 1 4 0  
1 0 0 1 5 0  
100160 
1 0 0 1 7 0  
100180 
1 0 0 1 9 0  
1 0 0 2 0 0  
1 0 0 2 1 0  
1 0 0 2 2 0  
1 0 0 2 3 0  
1 0 0 2 4 0  
1 0 0 2 5 0  
1 0 0 2 6 0  
1 0 0 2 7 0  
1 0 0 2 8 0  
1 0 0 2 9 0  
1 0 0 3 0 0  
1 0 0 3 1 0  
1 0 0 3 2 0  
1 0 0 3 3 0  
1 0 0 3 4 0  
1 0 0 3 5 0  
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SUBROUTINE WHIN 
COMMON /CNRD/ A L E N ( 1 0 1 ,  ANPI B A t  BO, C O N l r  

COMMON / C H I N /  AKI A K K ( 1 l ) r  CNKH, LBEGI L L S T ,  L L 2 r  1 N C f l O ) r  

COMMON /RUNWH/ A K H I Z O ) ,  A K A P T ( 2 0 1 ,  A R E A ( 1 0 1 ,  DELTI 

1 FFr GG, P I ,  QGG, TAUN 

1 KDSTP, KTQH, NSAV, NTOT, T I M ( 1 O l r  TMPD 

1 H L ( l 1 9 2 0 ) r  H R ( 1 1 9 2 O ) r  K S T I l l ) ,  KTRL(10 .1 ,  N I N T I  N P T S r  
2 Q Q ( 1 1 , 2 0 ) 9  S X ( l O ) ,  S Y ( l 0 ) c  T M E ( 2 O )  

D I M E N S I O N  D I A ( 1 O ) r  T H ( 1 0 1 9  V C W ( 1 O ) r  V W ( 1 0 1  
EQUIVALENCE ( K T l , K T R L I l ) ) ,  ( K T Z r K T R L ( 2 ) I r  ( K T 3 r K T R L ( 3 ) ) ,  

EQUIVALENCE (HA,HTANK) 
1 ( K T 4 r K T R L ( 4 ) ) ,  ( K T 5 , K T R L ( 5 ) )  

C READ I N P U T  
1000  R E A D ( 5 , l O O )  N I N T ,  NPTS, KTRL 

100  F O R M A T ( 1 6 1 5 )  
N I = N I N T + l  
R E A D ( 5 , 2 0 0 )  DELT,  8 0 9  BA, FFI CON19 TAUNI ANP 
R E A D ( 5 , 2 0 0 )  GG, QGGI HTANKI E l ,  RO 

R E A D ( 5 r 2 0 0 )  AK. ( A K K ( I I , I = l r N I )  
R E A D ( 5 , 2 0 0 )  ( A L E N ( I ) ~ I = I , N I M T )  
P I = 3 . 1 4 1 5 9 2 7  

I F l A N P  1 1 0 C 8 t 1 0 0 5 ~ 1 0 0 5  

200 FORMAT(8ElO.O)  

KTQH= 1 

1 0 0 5  PERD=l . /FF 
TMPD=ANP*PERD 
G O  TO 1009 

TMPD=TVPD*DELT 
1OC8 TMPD=NPTS+l  

1009  C N K H = A K K ( N I  1 
G O  TU ( 1 , 3 ) , K T 3  

1 R E A D ( 5 9 2 0 0 )  ( D I A ( I ) , I = I , N I N T )  
RFAD(5,ZCO)  ( T H ( I ) r I = l r N I N T )  

r c I N  I T I A L  CALCULAT I ONS 
V O = S O R T ( ~ G ~ A K * 1 4 4 . / R O )  
DO 2 I = l , N l N T  
A R E A ( I ) = P I ~ D I A ( I ! ~ D I A ( I l / 5 7 ~ .  
V C W ( l ) = S O P T ( l . + D I A ( I ) ~ ~ ~ K / ~ T H ~ l ) ~ F l ) )  

2 VW( I )=VO/VCbI(  J 1 
G O  TO 4 

R E A D ( 5 9 2 0 0 )  ( A R E A ( I 1  r I = l q N : r V T I  

DO 7 I = l , N I N T  
S X (  I ) = V W (  I ) / (FC**P-RTA(  I )  1 
SY(I)=-SX(I) 
T I Y ( I ) = A L r N ( I ) / V ~ ~ ( ! i  
I N C (  I ) = T I P ( I  ) /DELT+.5  
I F ( N S A V - I N C ( I ) ) 6 * 7 , 7  

3 R E A D ( 5 9 2 0 0 )  ( V b J ( I ) r I = l , N I N T )  

4 N5AV.O 

6 N S A V = I N C (  I )  
7 C O N T I N U E  

LLZ=NSAV+2 
GO T O  ( 1 7 , 2 0 , 2 3 ) , K T S  

kkY  ( 1 )  = C I N l ~ ~ A t : C r , T  ( 1  i 
1 7  A K A g T ( l ) = B O  

2 0  t l R (  i , l ) = H A  
i ;*I = 1 
2 0  23 1 = 1 9 t 4 1  
i i L (  i , i ) = ! l R ( I Y 9 : )  
iq= I 

2 0 0 0 1 0  
2 00020 
200030 
200040 
2 0 0 0 5 0  
200060 
200070 
200080 
200090 
200100 
200110 
200120 
200130 
200140 
2 0 0 1 5 0  
2 0 0 1 6 0  
2 0 0 1 7 0  
2 0 0 1 8 0  
2 0 0 1 9 0  
2 0 0 2 0 0  
2 0 0 2 1 0  
2 0 0 2 2 0  
2 0 0 2 3 0  
2 0 0 2 4 0  
2 0 0 2 5 0  
200260 
2 0 0 2 7 0  
2 0 0 2 8 0  
2 0 0 2 9 0  
2 0 0 3 0 0  
2 0 0 3 1 0  
2 0 0 3 2 0  
200330 
2 0 0 3 4 0  
2 0 0 3 5 0  
2 0 0 3 6 0  
2 0 0 3 7 0  
2 0 0 3 8 0  
2 0 0 3 9 0  
2 0 0 4 0 0  
2 0 0 4 1 0  
2 0 0 4 2 0  
2 0 0 4 3 0  
2 0 0 4 4 0  
2 0 C 4 5 0  
2 0 0 4 6 0  
2 0 0 4 7 0  
2 0 0 4 8 0  
2 0 0 4 9 0  
2 0 0 5 0 0  
2 0 0 5 1 0  
2 0 0 5 2 0  
2 0 0 5 3 0  
2 0 0 5 4 0  
2 0 0 5 5 0  
2 0 0 5 6 0  
2 0 0 5 7 0  
2 0 0 5 8 0  
2 0 0 5 9 0  
2 0 0 6 0 @  
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HR(Itl)=HL(IMrl)-(QGG/AKK(I))**2 
23 CONTINUE 

C INITIAL OUTPUT 
WRITE(6r210) NINTr NPTSr (KTRL(I)rI=1,5) 
WRITE(6r220) DELTI BO, BAI FF, CONlr TAUNt ANP 
WRITE(6t230) GGr QGGr HA* HR(NIr1)v El, ROr A K  
WRITE(6t240) ( A K K ( I ) t I = l t N I )  

210 FORMAT(8HlNINT = 13r5Xr7HNPTS = 13r/r 

220 FORMAT(8HKDELT =' 61306r5Xr7H B O  = G13.6r5X97H BA = G13m6r5Xr 
l8HKKTRL = 139917) 

17H FF = G1306t/t 
28HKCON1 = 61306r5Xr7HTAUN = G1306*5X,7H ANP = G13.6) 

230 FORMAT(8HK G = G1306r5Xt7H QGG = G1306r5X,7HHTANK= G1306r5Xv 
17H HC = G1306r/r 
28HK El = C13.6r5Xr7H RO = G1306r5Xr7H K = G13.6) 

240 FORMAT(8HK K A  = G1306r5Xr7H K B  = G13o6,5X,7H KDE = G1306r5X9 
17H KG = G1306*5X,7H KH = G13.6) 
GO TO (439481rKT3 

WRITE(69245) (DIA(I),I=lrNINT) 
WRITE(6t260) (TH(I),I=lrNINT) 
WRITE(6r280) (VCW(I),I=lrNINT) 

48 WRITE(6r250) (ALENI I )  rI=ltNINT) 
WRITE(6r270) (AREA(I),I=l,NINT) 
WRITE(6r290) ( V W ( I ) r I = l r N I N T )  
WRITE(69300) (SX(I),I=lrNINT) 
WRITE(6t310) (SY(I)rI=lrNINT) 
WRITE(6r3201 (TIM(I)rI=lrNINT) 
WRITE(6r330) 

43 WRITE(6r235)VO 

( INC ( I  ) r  I=,l rNINT 1 
235 FORMATIEHK V O  = G1608r//, 

245 FORMAT(8HJ D = G16.8r4G22.8) 
260 FORMAT(8HK TH = G16.8r4G22.81 
2 8 0  FORMATIBHK VCW = G16.8r4G22.8) 
250 FORMAT(8HK L = G16.8r4G22.8) 
270 FORMAT(8HK A = 616.894G22.8) 
290 FORMAT(8HK V W  = 616.8r4G2208) 
300 FORMAT(8HK SX = 61608,462208) 
310 FORMAT(8HK SY = G16.8r4G22.8) 
320 FORMAT(8HK T I M  = G16.8r4G22.8) 
330 FORMAT(8HK INC = 6160894622.8) 

22HK r 1 4 X ~ 1 H 1 , 2 1 X ~ 1 H 2 ~ 2 1 X , l H ~ ~ 2 l X , l H 4 )  

RETURN 
END 

SUBROUT I N E  WHAM 

COMMON /CNRD/ ALEN(10), ANPr BAr B O ,  CONlr 

COMMON /CHIN/ P.K, A K K ( 1 l ) r  CNKH, LBEG, LLSTr LL29 I N C ( 1 O ) r  

C O M M O N  /RUNWH/ AKH(20)r AKAPT(20)v A R E A ( 1 0 1 ,  DELTI 

C CHARACTERISTIC SOLUTION OF W A T E R  HAMMER BY LATTICE POINT METHOD 

1 FFI GG, PI9 QGGI T A U N  

1 KDSTP, KTQH, NSAVI N T O T I  TIM(10)r TMPD 

1 HL(ll,?O)r HR(llr20)r KST(lJ.1, KT R L ( l @ ) ,  N I N T r  NPTS, 
2 QQ(11,20), SX(lO)r SY(lO), TME(2O) 
EQUIVALENCE ( A K A r A K K ( 1 ) )  
EQUIVALENCE ( K T l r K T R L I l ) ) ,  (KT2rKTRL(2)), (KT3rKTRL(3))9 

DIMENSION CX(1l)r CY(11) 
1 (KT4rKTRL(4)), (KT5rKTRL(5)) 

N I=NINT+l 

200610 
200620 
200630 
200640 
200650 
200660 
200670 
200680 
200690 
200700 
200710 
200720 
200730 
200740 
200750 
200760 
200770 
200780 
200790 
200800 
200810 
200820 
2 008 30 
200840 
200850 
200860 
200870 
200880 
200890 
200900 
200910 
200920 
200930 
200940 
200950 
200960 
200970 
200980 
200990 
201000 
201010 
201020 
201030 

300010 
300020 
300030 
300040 
300050 
300060 
300070 
300080 
300090 
300100 
300110 
300120 
300130 
300140 
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C B E G I N N I N G  OF LOOP ON T I M E  
DO 90 L T = L B E G s L L S T  
NTOT=NTOT+l  
I F ( N T O T - N P T S ) 4 r 4 9 2  

2 L L S T Z L T - 1  
KDSTP=2 
I F ( L L S T - L B E G ) 3 9 9 5 9 9 5  

3 KDSTP=3 
GO T O  9 5  

4 ATZNTOT-1 
T IME=AT*DELT 
TME.( L T  ) = T  I ME 
A K H ( L T ) = A K K ( N I )  
A K A P T ( L T ) = A K A / C O N l  
I F ( T 1 M E - T M P D )  6 9 2 0 9 2 0  

6 GO T O (  79  8 r 2 0 ) r K T 4  
7 W R K = 2 o * P I * F F * T I M E  

AKAPT(LT)=BO+BA+SIN(WRK) 
A K A = C O N l * A K A P T ( L T )  
GO TO 2 0  

I F ( A K H ( L T ) ) 9 , 9 r l 2  
8 A K H ( L T ) = C N K H + ( l o - A T / T A U N )  

9 A K H ( L T ) = O o  
KTQH=2 

1 2  A K K ( N I ) = A K H ( L T )  
C B E G I N N I N G  OF LOOP T O  CALCULATE EACH LOCATION A T  A G I V E N  T I M E  
C ( T M E ( L T )  1 

2 0  DO 8 5  I = l , N I  
I F ( I - N I N T ) 2 1 , 2 1 r 2 3  

2 1  L P S T = M A X O ( L T - I N C ( I ) s l )  
CY(I)=HL(I+l,LPST)+SY(I)*QQ(I+l,LPST) 
CX(I+l)=HR(I~LPST)+SX(I)*QQ(I,LPST) 

2 3  I F ( K S T ( I ) - N T O T ) 2 7 , 2 7 , 2 4  
2 4  Q Q ( I r L T ) = Q G G  

H L (  I r L T ) = H L ( I * l )  
H R ( I , L T ) = H R ( I , l )  
GO T O  8 5  

2 7  GO T O  ( 3 2 r 4 2 9 5 2 9 6 2 r 7 2 ) r I  
3 2  T R M = A K K ( l ) * S Y ( l )  

WRK=TRM'TRM-4o*(CY(l)-HL(l91) 
QQ( 1,LT ) = o S * A K K (  1 I * (  TRM+SQRT ( W R K )  1 
HR(l,LT)=CY(l)-QQ(l,LT)*SY(l) 
GO TO 8 5  

4 2  X X = C X ( Z ) - C Y ( Z )  
Y Y = S X ( l ) - S Y ( Z )  
Q Q ( 2 9 L T ) = Q C A L C ( A K K ( 2 ) r X X I Y Y )  
HL(ZrLT)=CX(2)-SX(l)*QQ(Z,LT) 
H R ( Z r L T ) = C Y ( Z ) - S Y ( 2 1 * Q Q ( Z , L T )  
GO T O  8 5  

5 2  X X = C X ( 3 ) - C Y I 3 )  
Y Y = S X ( Z ) - S Y ( 3 )  
Q Q ( 3 r L T ) = Q C A L C ( A K K ( 3 ) , X X , Y Y )  
H L ( 3 , L T ) = C X ( 3 ) - S X ( 2 ) + Q Q O  
HR(3,LT)=CY(3)-SY(3)*QQ(39LT) 
GO TO 85 

6 2  X X = C X ( 4 ) - C Y ( 4 )  
Y Y = S X ( 3 ) - S Y ( 4 )  
Q Q ( 4 r L T ) = Q C A L C ( A K K ( 4 ) , X X , Y Y )  
HL(4rLT)=CX(4)-SX(3)*QQ(4,LT) 
H R ( ~ ~ L T ) = C Y ( ~ ) - S Y ( ~ ) * Q Q { ~ S L T )  
GO T O  8 5  

7 2  GO T O  ( 7 8 9 7 6 1 9 K T Q H  
7 6  Q Q ( S * L T ) = O o  

GO TO 7 9  

3 0 0 1 6 0  3 0 0 1 5 0  

3 0 0 1 7 0  
3 0 0 1 8 0  
3 0 0 1 9 0  
3 0 0 2 0 0  
3 0 0 2 1 0  
3 0 0 2 2 0  
3 0 0 2 3 0  
3 0 0 2 4 0  
3 0 0 2 5 0  
3 0 0 2 6 0  
3 0 0 2 7 0  
3 0 0 2 8 0  
3 0 0 2 9 0  
3 0 0 3 0 0  
3 0 0 3 1 0  
3 0 0 3 2 0  
3 0 0 3 3 0  
3 0 0 3 4 0  
3 0 0 3 5 0  
3 0 0 3 6 0  
3 0 0 3 7 0  
3 0 0 3 8 0  
3 0 0 3 9 0  
3 0 0 4 0 0  
3 0 0 4 1 0  
3 0 0 4 2 0  
3 0 0 4 3 0  
3 0 0 4 4 0  
3 0 0 4 5 0  
3 0 0 4 6 0  
3 0 0 4 7 0  
3 0 0 4 8 0  
3 0 0 4 9 0  
3 0 0 5 0 0  
3 0 0 5 1 0  
3 0 0 5 2 0  
3 0 0 5 3 0  
3 0 0 5 4 0  
3 0 0 5 5 0  
3 0 0 5 6 0  
3 0 0 5 7 0  
3 0 0 5 8 0  
3 0 0 5 9 0  
3 0 0 6 0 0  
3 0 0 6 1 0  
3 0 0 6 2 0  
3 0 0 6 3 0  
3 0 0 6 4 0  
3 0 0 6 5 0  
3 0 0 6 6 0  
3 0 0 6 7 0  

3 0 0 6 9 0  
3 0 0 7 0 0  
3 0 0 7 1 0  
3 0 0 7 2 0  
3 0 0 7 3 0  
3 0 0 7 4 0  
3 0 0 7 5 0  
3 0 0 7 6 0 .  
3 0 0 7 7 0  
3 0 0 7 8 0  

3 0 0 6 8 0  
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7 8  XX=CX(5)-HR(5rl) 

7 9  H L ( 5 r L T ) = C X ( 5 ) - S X ( 4 ) * Q Q ( 5 , L T )  
8 5  CONTINUE 
90 CONTINUE 
95 RETURN 

END 

Q Q ( ~ ~ L T ) = Q C A L C ( A K K ( ~ ) V X X ~ S X ( ~ ) )  

SUBROUTINE WHOUT(KDSTP) 
C BASIC OUTPUT AND INITIALIZATION 

COMMON /CHIN/ AKI AKKIll), CNKH, LBEG, LLSTI LL2r INCtlO), 

COMMON /RUNWH/ AKH(2O)r AKAPT(20)r AREA(101, DELTI 
1 KDSTP, KTQH, NSAVI NTOT, TIMIlO), TMPD 

1 HL(llr2O)r HR(119201, KSTIllI, KTRL(101, NINTI NPTS, 
2 QQ(llr20)~ SX(lO), SY(lO), TME(2O) 
DIMENS I ON VEL ( 20 
WRITE(6930) (TME(L)rL=LBEG,LLST) 
WRITE(6940) (AKAPT(L),L=LBEG,LLST) 
WRITE(6950) (AKHIL),L=LBEG,LLST) 

DO 2 8  I=l,IL 
WRITE(6r60) 1 1  (QQ(IIL)~L=LBEG,LLST) 
DO 8 L=LBEG,LLST 

WRITE(6r70) (VEL(L)rL=LBEG,LLST) 
IF(I-1)12914~12 

I L=NINT+l 

8 VEL(L)=QQ(IrL)/AREA(l) 

12 WRITE(6980) (HL(I,L)tL=LBEG,LCST) 
14 IF(I-IL116918*16 
16 WRITE(6990) (HR(IIL),L=LBEGILLST) 
18 GO TO (22928) 9KDSTP 
22 LA=NSAV+l 

LBzLLST-NSAV 
DO 24 L=2rLA 
LB=LB+l 
QQ(ItL)=QQ(I,LB) 
HL(I,L)=HL(I,LB) 
HR( IIL)=HR(IILB) 

24 CONTINUE 
28 CONTINUE 
30 FORMAT(lOH1 TIM = 8615.6) 
40 FORMAT(1OHJ AKAPT = 8615.6) 
50 FORMAT(1OHJ AKH = 8615.63 
60 FORMAT(2HK 912r6H 0 = 8615.5) 
70 FORMAT(1OHJ VEL = 8615.6) 
80 FORMAT(1OHJ HL = 8615.6) 
90 FORMAT(1OHJ HR = 8615.6) 

RETURN 
END 

FUNCTION QCALC(AKK9XXqYY) 
W R K = 4 . * A B . S ( X X ) / ( A K K * A K K * Y Y * Y Y )  
WRK=SQRT(l.+WRK)-l. 
WRK=AKK*AKK+YY*WRK/Z. 
QCALC=SIGN(WRKIXX) 
RETURN 
END 

300790 
300800 
300810 
300820 

300840 
300850 

300830 

400010 
400020 
400030 
400040 
400050 
400060  
400070 
400080 
400090 
400100 
400110 
400120 
400130 
400140 
400150 
400160 
400170 
400180 
400190 
400200 
400210 
400220 
400230 
400240 
400250 
400260 
400270 
400280 
400290 
400300 
400310 
400320 
400330 
400340 
400350 
400360 
400370 
400380 
400390 
400400 

500010 
500020 
500030 
500040 
500050 
500060 
500070 
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